277 research outputs found

    A wireless multicast delivery architecture for mobile terminals

    Get PDF
    Content delivery over the Internet to a large number of mobile users offers interesting business opportunities for content providers, intermediaries, and access network operators. A user could receive, for example, music or a digital newspaper directly to a mobile device over wireless networks. Currently, content delivery over the Internet is held back by a number of reasons. Existing network technologies, such as GPRS, have a very limited capacity to transfer large files, such as those required for good-quality pictures in a newspaper. Another problem is security. Content received over the Internet is very vulnerable to being forged. A user who cannot be certain about the source and consistency of the received stock quotes is unlikely to pay for the information. Furthermore, content providers are unwilling to distribute their valuable information over the Internet due to their fear of copyright infringements. Traditionally, content has been considered consumed as soon as it has been downloaded. Content providers have been keen on preventing their content from being transferred over peer-to-peer networks because they consider the delivery itself to be a copyright infringement. In this dissertation, content delivery is separated from content consumption by encrypting the content before delivery. When the users wishes to consume the content, a license which includes the decryption key is provided. The architecture allows content to be delivered to users' devices even before the user commits to consume the content. The user can choose to receive content whenever downloading it is the most convenient and affordable. Thus, the content providers are able to maintain control over the use of their information even after the data has been transferred to the users' terminals. In addition, content received by users can be strongly source authenticated. The architecture allows secure, efficient and reliable delivery of content to a large group of receivers. The architecture does not commit itself to any specific delivery technique, and the content can be delivered using any delivery technique including multicast, broadcast, unicast, and peer-to-peer. This dissertation focuses mostly on multicast as the delivery technique. The efficiency of the multicast delivery over unreliable heterogenous wireless access networks is thoroughly analyzed. Mobile terminals can seamlessly switch between access points and access technologies while continuing to receive data reliably from the network. The multicast delivery uses adaptive error correction and retransmissions to deliver the content as efficiently as possible to a very large number of receivers. The simulations show, that the vast majority of receivers are able to receive the content reliably with a small delay even when the radio network suffers from high packet loss probability. Although the architecture is designed to deliver content to mobile terminals, it is also suitable for delivering content to terminals with fixed Internet connectivity.Digitaalisen sisällön siirtäminen liikkuville käyttäjille Internetin yli tarjoaa uusia liiketoimintamahdollisuuksia niin sisällöntuottajille, välittäjille kuin verkko-operaattoreille. Teknikkaa voidaan käyttää esimerkiksi musiikin tai sähköisten lehtien välittämiseen käyttäjille langattoman verkon kautta. Sisällön välittämistä Internetin kautta hankaloittaa yhä usea seikka. Nykyisin laajassa käytössä olevat verkkotekniikat, kuten GPRS, ovat liian hitaita siirtämään hyvin suuria tiedostoja suurelle määrällä vastaanottajia. Lisäksi väärennetyn tiedon välittäminen Internetin kautta on erittäin helppoa. Sisältö, jonka aitoudesta ja alkuperästä ei ole varmuutta, on usein arvotonta käyttäjälle. Sisällöntuottajat puolestaan ovat haluttomia käyttämään sisältönsä levittämiseen Internetiä mikäli digitaalisesti levitettävän sisällön kopioiminen ja oikeudeton kuluttaminen on liian helppoa. Perinteisesti sisältö ajatellaankin kulutetuksi jo sillä hetkellä, kun se on siirretty käyttäjän laitteeseen. Sen vuoksi sisällön tuottajat ovatkin käyttäneet paljon resursejaan estääkseen sisältönsä välittämisen vertaisverkoissa, koska jo pelkkää sisällön siirtämistä pidetään tekijänoikeusrikkomuksena. Tässä työssä erotetaan sisällön siirtäminen sisällön kuluttamisesta suojaamalla sisältö salauksella ennen sen siirtämistä käyttäjille ja sallimalla vapaa salatun sisällön jakelu. Arkkitehtuuri mahdollistaa sisällön siirtämisen käyttäjien laitteille silloin kun sisällön siirtäminen on edullisinta ja tehokkainta. Vasta käyttäjän halutessa kuluttaa aiemmin lataamaansa sisältöä, tarkistetaan oikeis sisällön käyttöön. Arkkitehtuuri mahdollistaa myös ladatun sisällön alkuperän ja eheyden vahvan tarkistamisen. Arkkitehtuuri mahdollistaa turvallisen, tehokkaan ja luotettavan sisällön siirtämisen suurelle määrälle vastaanottajia. Arkkitehtuuri ei pakota sisällön jakelua käyttämään mitään tiettyä siirtomenetelmää vaan sisältö voidaan siirtää käyttäen esimerkiksi ryhmälähetystä (multicast), joukkolähetystä (broadcast), täsmälähetystä (unicast) tai vertaisverkkoja (peer-to-peer). Tässä työssä on keskitytty analysoimaan ryhmälähetyksen soveltuvuutta tiedon siirtomenetelmänä. Ryhmälähetysmenetelmän tehokkuutta on analysoitu siirrettäessä sisältöä heterogeenisen langattoman liityntäverkon yli. Liikkuvat päätelaitteet voivat siirtyä saumattomasti liityntäverkosta toiseen samalla kun ne vastaanottavat sisältöä. Ryhmälähetys hyödyntää adaptiivista virheenkorjausta ja uudelleenlähetyksiä siirtääkseen sisällönmahdollisimman tehokkaasti suurelle joukolle vastaanottajia. Simulaatiot osoittavat, että erittäin suuri osa vastaanottajista saa sisällön luotettavasti ja pienellä viiveellä vaikka liityntäverkossa pakettien virhetodennäköisyys olisi suuri. Arkkitehtuuri on suunniteltu siirtämään sisältöä liikkuville laitteille, mutta sitä voidaan käyttää yhtä hyvin myös kiinteään verkkoon liitettyjen laitteiden kanssa.reviewe

    Formal models and analysis of secure multicast in wired and wireless networks

    Get PDF
    The spreading of multicast technology enables the development of group communication and so dealing with digital streams becomes more and more common over the Internet. Given the flourishing of security threats, the distribution of streamed data must be equipped with sufficient security guarantees. To this aim, some architectures have been proposed, to supply the distribution of the stream with guarantees of, e.g., authenticity, integrity, and confidentiality of the digital contents. This paper shows a formal capability of capturing some features of secure multicast protocols. In particular, both the modeling and the analysis of some case studies are shown, starting from basic schemes for signing digital streams, passing through proto- cols dealing with packet loss and time-synchronization requirements, concluding with a secure distribution of a secret key. A process-algebraic framework will be exploited, equipped with schemata for analysing security properties and compositional principles for evaluating if a property is satisfied over a system with more than two components

    Enhanced Multimedia Exchanges over the Internet

    Get PDF
    Although the Internet was not originally designed for exchanging multimedia streams, consumers heavily depend on it for audiovisual data delivery. The intermittent nature of multimedia traffic, the unguaranteed underlying communication infrastructure, and dynamic user behavior collectively result in the degradation of Quality-of-Service (QoS) and Quality-of-Experience (QoE) perceived by end-users. Consequently, the volume of signalling messages is inevitably increased to compensate for the degradation of the desired service qualities. Improved multimedia services could leverage adaptive streaming as well as blockchain-based solutions to enhance media-rich experiences over the Internet at the cost of increased signalling volume. Many recent studies in the literature provide signalling reduction and blockchain-based methods for authenticated media access over the Internet while utilizing resources quasi-efficiently. To further increase the efficiency of multimedia communications, novel signalling overhead and content access latency reduction solutions are investigated in this dissertation including: (1) the first two research topics utilize steganography to reduce signalling bandwidth utilization while increasing the capacity of the multimedia network; and (2) the third research topic utilizes multimedia content access request management schemes to guarantee throughput values for servicing users, end-devices, and the network. Signalling of multimedia streaming is generated at every layer of the communication protocol stack; At the highest layer, segment requests are generated, and at the lower layers, byte tracking messages are exchanged. Through leveraging steganography, essential signalling information is encoded within multimedia payloads to reduce the amount of resources consumed by non-payload data. The first steganographic solution hides signalling messages within multimedia payloads, thereby freeing intermediate node buffers from queuing non-payload packets. Consequently, source nodes are capable of delivering control information to receiving nodes at no additional network overhead. A utility function is designed to minimize the volume of overhead exchanged while minimizing visual artifacts. Therefore, the proposed scheme is designed to leverage the fidelity of the multimedia stream to reduce the largest amount of control overhead with the lowest negative visual impact. The second steganographic solution enables protocol translation through embedding packet header information within payload data to alternatively utilize lightweight headers. The protocol translator leverages a proposed utility function to enable the maximum number of translations while maintaining QoS and QoE requirements in terms of packet throughput and playback bit-rate. As the number of multimedia users and sources increases, decentralized content access and management over a blockchain-based system is inevitable. Blockchain technologies suffer from large processing latencies; consequently reducing the throughput of a multimedia network. Reducing blockchain-based access latencies is therefore essential to maintaining a decentralized scalable model with seamless functionality and efficient utilization of resources. Adapting blockchains to feeless applications will then port the utility of ledger-based networks to audiovisual applications in a faultless manner. The proposed transaction processing scheme will enable ledger maintainers in sustaining desired throughputs necessary for delivering expected QoS and QoE values for decentralized audiovisual platforms. A block slicing algorithm is designed to ensure that the ledger maintenance strategy is benefiting the operations of the blockchain-based multimedia network. Using the proposed algorithm, the throughput and latency of operations within the multimedia network are then maintained at a desired level

    Formal models and analysis of secure multicast in wired and wireless networks

    Get PDF
    The spreading of multicast technology enables the develop- ment of group communication and so, dealing with digital streams be- comes more and more common over the Internet. Given the flourishing of security threats, the distribution of streamed data must be equipped with sufficient security guarantees. To this aim, some architectures have been proposed in the last few years, to supply the distribution of the stream with guarantees of, e.g., authenticity, integrity and confidentiality of the digital contents. This paper shows a formal capability of captur- ing some features of secure multicast protocols. In particular, both the modeling and the analysis of some case studies are shown, starting from basic schemes for signing digital streams, passing through protocols deal- ing with packet loss and time-synchronization requirements, concluding with a secure distribution of a secret key. A process-algebraic framework will be exploited, equipped with schemata for analysing security proper- ties and compositional principles for evaluating if a property is satisfied over a system with more than two components

    Development and standardization of an embedded Linux based triple-play IP settop box

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical references (leaves: 46-48)Text in English; Abstract: Turkish and Englishix, 57 leavesWith the recent enhancements to the delivery of IP services and of the video codecs such as h.264, transmission of television through IP-based communication systems has been a viable option. An IP settop box (IPSTB) constructs a bridge between a television set and a broadband IP network such as DSL, cable modem, powerline or wireless broadband. IPSTB brings new challenges for the system designers, especially in the areas of inherently organized home networking systems, protocols, and architectures. Future IPSTB products are candidate to converge the information and entertainment technologies. This thesis suggests newly developed device and service discovery methods for the design of an IPSTB software structure that is compatible with the Universal Plug and Play (UPnP) audio video (AV) device descriptions. At the design process, it suggests optimized communication schemes between the servers that are in the control of service providers, and the consumer IPSTBs. As a newly developed technology, since there is not any standardization for most parts of the overall IPTV system, this thesis takes proven mechanisms as basis and adapts them to the overall design that consists of the hardware drivers, middleware, and the additional programs which helps the middleware to handle the external components of the system connected via USB or serial interfaces. Being an innovative idea, we have used a control system called Virtual Bus Manager so as to communicate between the aforementioned system components. Some system components such as web browser is based on the X Windows architecture, so cross compiling the X system for the embedded platform has also been a challenge for the feasibility of the final design. Being the second part of the Triple-Play system, Voice over IP application has also been included and based on the compilation of open source software for the corresponding embedded system. Finally, the web browser itself has been based on the popular Gecko web-core that is derived from Firefox

    Watermarking technique for wireless multimedia sensor networks: A state of the art

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor network which contain sensor nodes equipped with microphones, cameras, and other sensors that produce multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Multimedia nodes are susceptible to various types of attack, such as cropping, compression, or even physical capture and sensor replacement. Hence, security becomes an important issue in WMSNs. However, given the fact that sensors are resource constrained, the traditional intensive security algorithms are not well suited for WMSNs. This makes the traditional security techniques, based on data encryption, not very suitable for WMSNs. Watermarking techniques are usually computationally lightweight and do not require much memory resources. These techniques are being considered as an attractive alternative to the traditional techniques, because of their light resource requirements. The objective of this paper is to present a critical analysis of the existing state-of-the-art watermarking algorithms developed for WMSNs

    Securing SOME/IP for In-Vehicle Service Protection

    Get PDF
    Although high-speed in-vehicle networks are being increasingly adopted by the industry to support emerging use cases, previous research already demonstrated that car hacking is a real threat. This paper formalizes a novel framework proposed to provide improved security to the emerging SOME/IP middleware, without introducing at the same time limitations in the communication patterns available. Most notably, the entire traffic matrix is designed to be configured using simple high-level rules, clearly stating who can talk to whom according to the service abstraction adopted by SOME/IP. Three incremental security levels are made available, accounting for different services being associated with different requirements. The core security protocol, encompassing a session establishment phase followed by the transmission of secured SOME/IP messages, has been formally verified, to prove its correctness in terms of authentication and secrecy properties. Performance-wise, in-depth experimental evaluations conducted with an extended version of vsomeip confirmed the introduction of quite limited penalties compared to the bare unsecured implementation

    Delivering video services over IP networks

    Get PDF
    The main goal pursued in this Thesis is to contribute towards the design and development of an end-to-end solution/system that would assist in reliable, consistence, less packet-loss delivery of high-quality video signals of pre-recorded presentations, training lectures, live events such as seminars over standard IP networks. This Thesis will focus on the existing Internet Service Provider, Oman Telecommunications Company (Omantel) and its best delivery of high-bandwidth data such as video to its Local and regional offices and departments over IP networks. This video-over-IP system aims to accumulate the technical scientific knowledge required to be able to offer high-quality video, which is fully scalable over IP networks. It aims to convert this knowledge into experimental prototypes, which, after the Thesis, can be developed into an integrated generic environment for Video-over-IP service development and content production. The objective is to initially define the functionality of content Services that can be incorporated into the operations of Oman telecommunications company networks. Then define the functional characteristics and system requirements necessary for the deployment of content streaming services over Omantel IP based networks. The design of this system would be combined with streaming high-quality video, while maintaining scalability and bandwidth efficiencies required for large-scale enterprise deployment. The design would encompass various components that are needed to capture, store and deliver streaming video to desktops. It will investigate on what is required to deliver quality video over Omantel IP networks and will recommend the actual products and solutions for achieving the end result
    corecore