31 research outputs found

    Embedding Metrics into Ultrametrics and Graphs into Spanning Trees with Constant Average Distortion

    Full text link
    This paper addresses the basic question of how well can a tree approximate distances of a metric space or a graph. Given a graph, the problem of constructing a spanning tree in a graph which strongly preserves distances in the graph is a fundamental problem in network design. We present scaling distortion embeddings where the distortion scales as a function of ϵ\epsilon, with the guarantee that for each ϵ\epsilon the distortion of a fraction 1ϵ1-\epsilon of all pairs is bounded accordingly. Such a bound implies, in particular, that the \emph{average distortion} and q\ell_q-distortions are small. Specifically, our embeddings have \emph{constant} average distortion and O(logn)O(\sqrt{\log n}) 2\ell_2-distortion. This follows from the following results: we prove that any metric space embeds into an ultrametric with scaling distortion O(1/ϵ)O(\sqrt{1/\epsilon}). For the graph setting we prove that any weighted graph contains a spanning tree with scaling distortion O(1/ϵ)O(\sqrt{1/\epsilon}). These bounds are tight even for embedding in arbitrary trees. For probabilistic embedding into spanning trees we prove a scaling distortion of O~(log2(1/ϵ))\tilde{O}(\log^2 (1/\epsilon)), which implies \emph{constant} q\ell_q-distortion for every fixed q<q<\infty.Comment: Extended abstrat apears in SODA 200

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica

    Prioritized Metric Structures and Embedding

    Full text link
    Metric data structures (distance oracles, distance labeling schemes, routing schemes) and low-distortion embeddings provide a powerful algorithmic methodology, which has been successfully applied for approximation algorithms \cite{llr}, online algorithms \cite{BBMN11}, distributed algorithms \cite{KKMPT12} and for computing sparsifiers \cite{ST04}. However, this methodology appears to have a limitation: the worst-case performance inherently depends on the cardinality of the metric, and one could not specify in advance which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension) than that given by the worst-case guarantee. In this paper we alleviate this limitation by devising a suit of {\em prioritized} metric data structures and embeddings. We show that given a priority ranking (x1,x2,,xn)(x_1,x_2,\ldots,x_n) of the graph vertices (respectively, metric points) one can devise a metric data structure (respectively, embedding) in which the stretch (resp., distortion) incurred by any pair containing a vertex xjx_j will depend on the rank jj of the vertex. We also show that other important parameters, such as the label size and (in some sense) the dimension, may depend only on jj. In some of our metric data structures (resp., embeddings) we achieve both prioritized stretch (resp., distortion) and label size (resp., dimension) {\em simultaneously}. The worst-case performance of our metric data structures and embeddings is typically asymptotically no worse than of their non-prioritized counterparts.Comment: To appear at STOC 201

    Covering Metric Spaces by Few Trees

    Get PDF
    A tree cover of a metric space (X,d) is a collection of trees, so that every pair x,y in X has a low distortion path in one of the trees. If it has the stronger property that every point x in X has a single tree with low distortion paths to all other points, we call this a Ramsey tree cover. Tree covers and Ramsey tree covers have been studied by [Yair Bartal et al., 2005; Anupam Gupta et al., 2004; T-H. Hubert Chan et al., 2005; Gupta et al., 2006; Mendel and Naor, 2007], and have found several important algorithmic applications, e.g. routing and distance oracles. The union of trees in a tree cover also serves as a special type of spanner, that can be decomposed into a few trees with low distortion paths contained in a single tree; Such spanners for Euclidean pointsets were presented by [S. Arya et al., 1995]. In this paper we devise efficient algorithms to construct tree covers and Ramsey tree covers for general, planar and doubling metrics. We pay particular attention to the desirable case of distortion close to 1, and study what can be achieved when the number of trees is small. In particular, our work shows a large separation between what can be achieved by tree covers vs. Ramsey tree covers

    Algorithmic embeddings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 233-242).We present several computationally efficient algorithms, and complexity results on low distortion mappings between metric spaces. An embedding between two metric spaces is a mapping between the two metric spaces and the distortion of the embedding is the factor by which the distances change. We have pioneered theoretical work on relative (or approximation) version of this problem. In this setting, the question is the following: for the class of metrics C, and a host metric M', what is the smallest approximation factor a > 1 of an efficient algorithm minimizing the distortion of an embedding of a given input metric M E C into M'? This formulation enables the algorithm to adapt to a given input metric. In particular, if the host metric is "expressive enough" to accurately model the input distances, the minimum achievable distortion is low, and the algorithm will produce an embedding with low distortion as well. This problem has been a subject of extensive applied research during the last few decades. However, almost all known algorithms for this problem are heuristic. As such, they can get stuck in local minima, and do not provide any global guarantees on solution quality. We investigate several variants of the above problem, varying different host and target metrics, and definitions of distortion.(cont.) We present results for different types of distortion: multiplicative versus additive, worst-case versus average-case and several types of target metrics, such as the line, the plane, d-dimensional Euclidean space, ultrametrics, and trees. We also present algorithms for ordinal embeddings and embedding with extra information.by Mihai Bădoiu.Ph.D

    Online Duet between Metric Embeddings and Minimum-Weight Perfect Matchings

    Full text link
    Low-distortional metric embeddings are a crucial component in the modern algorithmic toolkit. In an online metric embedding, points arrive sequentially and the goal is to embed them into a simple space irrevocably, while minimizing the distortion. Our first result is a deterministic online embedding of a general metric into Euclidean space with distortion O(logn)min{logΦ,n}O(\log n)\cdot\min\{\sqrt{\log\Phi},\sqrt{n}\} (or, O(d)min{logΦ,n}O(d)\cdot\min\{\sqrt{\log\Phi},\sqrt{n}\} if the metric has doubling dimension dd), solving a conjecture by Newman and Rabinovich (2020), and quadratically improving the dependence on the aspect ratio Φ\Phi from Indyk et al.\ (2010). Our second result is a stochastic embedding of a metric space into trees with expected distortion O(dlogΦ)O(d\cdot \log\Phi), generalizing previous results (Indyk et al.\ (2010), Bartal et al.\ (2020)). Next, we study the \emph{online minimum-weight perfect matching} problem, where a sequence of 2n2n metric points arrive in pairs, and one has to maintain a perfect matching at all times. We allow recourse (as otherwise the order of arrival determines the matching). The goal is to return a perfect matching that approximates the \emph{minimum-weight} perfect matching at all times, while minimizing the recourse. Our third result is a randomized algorithm with competitive ratio O(dlogΦ)O(d\cdot \log \Phi) and recourse O(logΦ)O(\log \Phi) against an oblivious adversary, this result is obtained via our new stochastic online embedding. Our fourth result is a deterministic algorithm against an adaptive adversary, using O(log2n)O(\log^2 n) recourse, that maintains a matching of weight at most O(logn)O(\log n) times the weight of the MST, i.e., a matching of lightness O(logn)O(\log n). We complement our upper bounds with a strategy for an oblivious adversary that, with recourse rr, establishes a lower bound of Ω(lognrlogr)\Omega(\frac{\log n}{r \log r}) for both competitive ratio and lightness.Comment: 53 pages, 8 figures, to be presented at the ACM-SIAM Symposium on Discrete Algorithms (SODA24

    Computational metric embeddings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 141-145).We study the problem of computing a low-distortion embedding between two metric spaces. More precisely given an input metric space M we are interested in computing in polynomial time an embedding into a host space M' with minimum multiplicative distortion. This problem arises naturally in many applications, including geometric optimization, visualization, multi-dimensional scaling, network spanners, and the computation of phylogenetic trees. We focus on the case where the host space is either a euclidean space of constant dimension such as the line and the plane, or a graph metric of simple topological structure such as a tree. For Euclidean spaces, we present the following upper bounds. We give an approximation algorithm that, given a metric space that embeds into R1 with distortion c, computes an embedding with distortion c(1) [delta]3/4 (A denotes the ratio of the maximum over the minimum distance). For higher-dimensional spaces, we obtain an algorithm which, for any fixed d > 2, given an ultrametric that embeds into Rd with distortion c, computes an embedding with distortion co(1). We also present an algorithm achieving distortion c logo(1) [delta] for the same problem. We complement the above upper bounds by proving hardness of computing optimal, or near-optimal embeddings. When the input space is an ultrametric, we show that it is NP-hard to compute an optimal embedding into R2 under the ... norm. Moreover, we prove that for any fixed d > 2, it is NP-hard to approximate the minimum distortion embedding of an n-point metric space into Rd within a factor of Q(n1/(17d)). Finally, we consider the problem of embedding into tree metrics. We give a 0(1)approximation algorithm for the case where the input is the shortest-path metric of an unweighted graph.(cont.) For general metric spaces, we present an algorithm which, given an n-point metric that embeds into a tree with distortion c, computes an embedding with distortion (clog n)o ... . By composing this algorithm with an algorithm for embedding trees into R1, we obtain an improved algorithm for embedding general metric spaces into R1.by Anastasios Sidiropoulos.Ph.D
    corecore