747 research outputs found

    A vector light sensor for 3D proximity applications: Designs, materials, and applications

    Get PDF
    In this thesis, a three-dimensional design of a vector light sensor for angular proximity detection applications is realized. 3D printed mesa pyramid designs, along with commercial photodiodes, were used as a prototype for the experimental verification of single-pixel and two-pixel systems. The operation principles, microfabrication details, and experimental verification of micro-sized mesa and CMOS-compatible inverse vector light pixels in silicon are presented, where p-n junctions are created on pyramid’s facets as photodiodes. The one-pixel system allows for angular estimations, providing spatial proximity of incident light in 2D and 3D. A two-pixel system was further demonstrated to have a wider-angle detection. Multilayered carbon nanotubes, graphene, and vanadium oxide thin films as well as carbon nanoparticles-based composites were studied along with cost effective deposition processes to incorporate these films onto 3D mesa structures. Combining such design and materials optimizations produces sensors with a unique design, simple fabrication process, and readout integrated circuits’ compatibility. Finally, an approach to utilize such sensors in smart energy system applications as solar trackers, for automated power generation optimizations, is explored. However, integration optimizations in complementary-Si PV solar modules were first required. In this multi-step approach, custom composite materials are utilized to significantly enhance the reliability in bifacial silicon PV solar modules. Thermal measurements and process optimizations in the development of imec’s novel interconnection technology in solar applications are discussed. The interconnection technology is used to improve solar modules’ performance and enhance the connectivity between modules’ cells and components. This essential precursor allows for the effective powering and consistent operations of standalone module-associated components, such as the solar tracker and Internet of Things sensing devices, typically used in remote monitoring of modules’ performance or smart energy systems. Such integrations and optimizations in the interconnection technology improve solar modules’ performance and reliability, while further reducing materials and production costs. Such advantages further promote solar (Si) PV as a continuously evolving renewable energy source that is compatible with new waves of smart city technology and systems

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure

    LCCC focus period and workshop on Dynamics and Control in Networks

    Get PDF

    The Internet of Things: the future or the end of mechatronics.

    Get PDF
    The advent and increasing implementation of user configured and user oriented systems structured around the use of cloud configured information and the Internet of Things is presenting a new range and class of challenges to the underlying concepts of integration and transfer of functionality around which mechatronics is structured. It is suggested that the ways in which system designers and educators in particular respond to and manage these changes and challenges is going to have a significant impact on the way in which both the Internet of Things and mechatronics develop over time. The paper places the relationship between the Internet of Things and mechatronics into perspective and considers the issues and challenges facing systems designers and implementers in relation to managing the dynamics of the changes required

    Privacy is a process, not a PET: a theory for effective privacy practice

    Get PDF
    Privacy research has not helped practitioners -- who struggle to reconcile users' demands for information privacy with information security, legislation, information management and use -- to improve privacy practice. Beginning with the principle that information security is necessary but not sufficient for privacy, we present an innovative layered framework - the Privacy Security Trust (PST) Framework - which integrates, in one model, the different activities practitioners must undertake for effective privacy practice. The PST Framework considers information security, information management and data protection legislation as privacy hygiene factors, representing the minimum processes for effective privacy practice. The framework also includes privacy influencers - developed from previous research in information security culture, information ethics and information culture - and privacy by design principles. The framework helps to deliver good privacy practice by providing: 1) a clear hierarchy of the activities needed for effective privacy practice; 2) delineation of information security and privacy; and 3) justification for placing data protection at the heart of those activities involved in maintaining information privacy. We present a proof-of-concept application of the PST Framework to an example technology -- electricity smart meters

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application
    • …
    corecore