294 research outputs found

    Characterization and enumeration of toroidal K_{3,3}-subdivision-free graphs

    Get PDF
    We describe the structure of 2-connected non-planar toroidal graphs with no K_{3,3}-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K_5-subdivision in [A. Gagarin and W. Kocay, "Embedding graphs containing K_5-subdivisions'', Ars Combin. 64 (2002), 33-49]. It allows to recognize these graphs in linear-time and makes possible to enumerate labelled 2-connected toroidal graphs containing no K_{3,3}-subdivisions and having minimum vertex degree two or three by using an approach similar to [A. Gagarin, G. Labelle, and P. Leroux, "Counting labelled projective-planar graphs without a K_{3,3}-subdivision", submitted, arXiv:math.CO/0406140, (2004)].Comment: 18 pages, 7 figures and 4 table

    The obstructions for toroidal graphs with no K3,3K_{3,3}'s

    Full text link
    Forbidden minors and subdivisions for toroidal graphs are numerous. We consider the toroidal graphs with no K3,3K_{3,3}-subdivisions that coincide with the toroidal graphs with no K3,3K_{3,3}-minors. These graphs admit a unique decomposition into planar components and have short lists of obstructions. We provide the complete lists of four forbidden minors and eleven forbidden subdivisions for the toroidal graphs with no K3,3K_{3,3}'s and prove that the lists are sufficient.Comment: 10 pages, 7 figures, revised version with additional detail

    Bipartite Minors

    Full text link
    We introduce a notion of bipartite minors and prove a bipartite analog of Wagner's theorem: a bipartite graph is planar if and only if it does not contain K3,3K_{3,3} as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite (2,2)(2,2)-Laman graphs --- a certain family of graphs that contains all maximal bipartite planar graphs.Comment: 9 page

    The PC-Tree algorithm, Kuratowski subdivisions, and the torus.

    Get PDF
    The PC-Tree algorithm of Shih and Hsu (1999) is a practical linear-time planarity algorithm that provides a plane embedding of the given graph if it is planar and a Kuratowski subdivision otherwise. Remarkably, there is no known linear-time algorithm for embedding graphs on the torus. We extend the PC-Tree algorithm to a practical, linear-time toroidality test for K3;3-free graphs called the PCK-Tree algorithm. We also prove that it is NP-complete to decide whether the edges of a graph can be covered with two Kuratowski subdivisions. This greatly reduces the possibility of a polynomial-time toroidality testing algorithm based solely on edge-coverings by subdivisions of Kuratowski subgraphs
    corecore