15 research outputs found

    Optimization-based design of fault-tolerant avionics

    Get PDF
    This dissertation considers the problem of improving the self-consciousness for avionic systems using numerical optimization techniques, emphasizing UAV applications. This self-consciousness implies a sense of awareness for oneself to make a reliable decision on some crucial aspects. In the context of the avionics or aerospace industry, those aspects are SWaP-C as well as safety and reliability. The decision-making processes to optimize these aspects, which are the main contributions of this work, are presented. In addition, implementation on various types of applications related to avionics and UAV are also provided. The first half of this thesis lays out the background of avionics development ranging from a mechanical gyroscope to a current state-of-the-art electronics system. The relevant mathematics regarding convex optimization and its algorithms, which will be used for formulating this self-consciousness problem, are also provided. The latter half presents two problem formulations for redundancy design automation and reconfigurable middleware. The first formulation focuses on the minimization of SWaP-C while satisfying safety and reliability requirements. The other one aims to maximize the system safety and reliability by introducing a fault-tolerant capability via the task scheduler of middleware or RTOS. The usage of these two formulations is shown by four aerospace applications---reconfigurable multicore avionics, a SITL simulation of a UAV GNC system, a modular drone, and a HITL simulation of a fault-tolerant distributed engine control architecture.Ph.D

    Applications of Convex Analysis to Signomial and Polynomial Nonnegativity Problems

    Get PDF
    Here is a question that is easy to state, but often hard to answer: Is this function nonnegative on this set? When faced with such a question, one often makes appeals to known inequalities. One crafts arguments that are sufficient to establish the nonnegativity of the function, rather than determining the function's precise range of values. This thesis studies sufficient conditions for nonnegativity of signomials and polynomials. Conceptually, signomials may be viewed as generalized polynomials that feature arbitrary real exponents, but with variables restricted to the positive orthant. Our methods leverage efficient algorithms for a type of convex optimization known as relative entropy programming (REP). By virtue of this integration with REP, our methods can help answer questions like the following: Is there some function, in this particular space of functions, that is nonnegative on this set? The ability to answer such questions is extremely useful in applied mathematics. Alternative approaches in this same vein (e.g., methods for polynomials based on semidefinite programming) have been used successfully as convex relaxation frameworks for nonconvex optimization, as mechanisms for analyzing dynamical systems, and even as tools for solving nonlinear partial differential equations. This thesis builds from the sums of arithmetic-geometric exponentials or SAGE approach to signomial nonnegativity. The term "exponential" appears in the SAGE acronym because SAGE parameterizes signomials in terms of exponential functions. Our first round of contributions concern the original SAGE approach. We employ basic techniques in convex analysis and convex geometry to derive structural results for spaces of SAGE signomials and exactness results for SAGE-based REP relaxations of nonconvex signomial optimization problems. We frame our analysis primarily in terms of the coefficients of a signomial's basis expansion rather than in terms of signomials themselves. The effect of this framing is that our results for signomials readily transfer to polynomials. In particular, we are led to define a new concept of SAGE polynomials. For sparse polynomials, this method offers an exponential efficiency improvement relative to certificates of nonnegativity obtained through semidefinite programming. We go on to create the conditional SAGE methodology for exploiting convex substructure in constrained signomial nonnegativity problems. The basic insight here is that since the standard relative entropy representation of SAGE signomials is obtained by a suitable application of convex duality, we are free to add additional convex constraints into the duality argument. In the course of explaining this idea we provide some illustrative examples in signomial optimization and analysis of chemical dynamics. The majority of this thesis is dedicated to exploring fundamental questions surrounding conditional SAGE signomials. We approach these questions through analysis frameworks of sublinear circuits and signomial rings. These sublinear circuits generalize simplicial circuits of affine-linear matroids, and lead to rich modes of analysis for sets that are simultaneously convex in the usual sense and convex under a logarithmic transformation. The concept of signomial rings lets us develop a powerful signomial Positivstellensatz and an elementary signomial moment theory. The Positivstellensatz provides for an effective hierarchy of REP relaxations for approaching the value of a nonconvex signomial minimization problem from below, as well as a first-of-its-kind hierarchy for approaching the same value from above. In parallel with our mathematical work, we have developed the sageopt python package. Sageopt drives all the examples and experiments used throughout this thesis, and has been used by engineers to solve high-degree polynomial optimization problems at scales unattainable by alternative methods. We conclude this thesis with an explanation of how our theoretical results affected sageopt's design.</p

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    PROBABILISTIC PREDICTION USING EMBEDDED RANDOM PROJECTIONS OF HIGH DIMENSIONAL DATA

    Get PDF
    The explosive growth of digital data collection and processing demands a new approach to the historical engineering methods of data correlation and model creation. A new prediction methodology based on high dimensional data has been developed. Since most high dimensional data resides on a low dimensional manifold, the new prediction methodology is one of dimensional reduction with embedding into a diffusion space that allows optimal distribution along the manifold. The resulting data manifold space is then used to produce a probability density function which uses spatial weighting to influence predictions i.e. data nearer the query have greater importance than data further away. The methodology also allows data of differing phenomenology e.g. color, shape, temperature, etc to be handled by regression or clustering classification. The new methodology is first developed, validated, then applied to common engineering situations, such as critical heat flux prediction and shuttle pitch angle determination. A number of illustrative examples are given with a significant focus placed on the objective identification of two-phase flow regimes. It is shown that the new methodology is robust through accurate predictions with even a small number of data points in the diffusion space as well as flexible in the ability to handle a wide range of engineering problems

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    New Elements of Heat Transfer Efficiency Improvement in Systems and Units

    Get PDF
    Zvýšení efektivity výměny tepla vede k poklesu spotřeby energie, což se následně projeví sníženými provozními náklady, poklesem produkce emisí a potažmo také snížením dopadu na životní prostředí. Běžné způsoby zefektivňování přenosu tepla jako např. přidání žeber či vestaveb do trubek ovšem nemusí být vždy vhodné nebo proveditelné -- zvláště při rekuperaci tepla z proudů s vysokou zanášivostí. Jelikož intenzita přestupu tepla závisí i na charakteru proudění, distribuci toku a zanášení, které lze všechny výrazně ovlivnit tvarem jednotlivých součástí distribučního systému, bylo sestaveno několik zjednodušených modelů pro rychlou a dostatečně přesnou predikci distribuce a také aplikace pro tvarovou optimalizaci distribučních systémů využívající právě tyto modely. Přesnost jednoho z modelů byla dále zvýšena pomocí dat získaných analýzou 282 distribučních systémů v softwaru ANSYS FLUENT. Vytvořené aplikace pak lze využít během návrhu zařízení na výměnu tepla ke zvýšení jejich výkonu a spolehlivosti.Improved heat transfer efficiency leads to decrease in energy consumption which then results in lower equipment operational cost, reduced emissions, and consequently also lower environmental impact. However, common enhancement approaches such as adding fins or tube inserts may not always be suitable or feasible -- especially in case of heat recovery from streams having a high fouling propensity. Since heat transfer rate depends also on flow field characteristics, fluid distribution, and fouling which can all be greatly influenced by the actual shapes of flow system components, several simplified models for fast and accurate enough prediction of fluid distribution as well as applications for shape optimization based on these models were developed. In addition, accuracy of one of the models was further increased by fine-tuning it using data obtained by evaluation of 282 flow systems in the fluid flow modelling software ANSYS FLUENT. The created applications can then be employed during the design of heat exchange units to improve their performance and reliability.
    corecore