112 research outputs found

    Comparison of Nonlinear Filtering Methods for Battery State of Charge Estimation

    Get PDF
    In battery management systems, the main figure of merit is the battery\u27s SOC, typically obtained from voltage and current measurements. Present estimation methods use simplified battery models that do not fully capture the electrical characteristics of the battery, which are useful for system design. This thesis studied SOC estimation for a lithium-ion battery using a nonlinear, electrical-circuit battery model that better describes the electrical characteristics of the battery. The extended Kalman filter, unscented Kalman filter, third-order and fifth-order cubature Kalman filter, and the statistically linearized filter were tested on their ability to estimate the SOC through numerical simulation. Their performances were compared based on their root-mean-square error over one hundred Monte Carlo runs as well as the time they took to complete those runs. The results show that the extended Kalman filter is a good choice for estimating the SOC of a lithium-ion battery

    Adaptive and robust fractional gain based interpolatory cubature Kalman filter

    Get PDF
    In this study, we put forward the robust fractional gain based interpolatory cubature Kalman filter (FGBICKF) and the adaptive FGBICKF (AFGBICKF) for the development of the state estimators for stochastic nonlinear dynamics system. FGBICKF introduces a fractional gain to interpolatory cubature Kalman filter to increase the robustness of state estimation. AFGBICKF is developed to enhance the state estimation adaptive to stochastic nonlinear dynamics system with unknown process noise covariance through recursive estimation. The simulations on re-entry target tracking system have shown that the performance of FGBICKF is superior to that of cubature Kalman filter and interpolatory cubature Kalman filter, and standard deviation of FGBICKF is closer to posterior Cramér-Rao lower bound. Moreover, our simulations have also demonstrated that AFGBICKF remains stable even when the initial process noise covariance increase, proving its adaptiveness, robustness, and effectiveness on state estimation

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Nonlinear state estimation using neural-cubature Kalman filter

    Get PDF
    The cubature Kalman filter (CKF) has been widely used in solving nonlinear state estimation problems because of many advantages such as satisfactory filtering accuracy and easy implementation compared to extended Kalman filter and unscented Kalman filter. However, the performance of CKF may degrade due to the uncertainty of the nonlinear dynamic system model. To solve this problem, a neural-cubature Kalman filter (NCKF) algorithm containing a multilayer feed-forward neural network (MFNN) in CKF is proposed to further improve the estimation accuracy and enhance the robustness of CKF. In the proposed NCKF algorithm, the MFNN was used to modify the nonlinear state estimation of CKF as the measurements were processed, and the CKF was used as both a state estimator and an online training paradigm simultaneously. The experimental results show that the estimation accuracy and robustness of the proposed method are better than those of the CKF, square-root CKF and particle filter

    Practice and Innovations in Sustainable Transport

    Get PDF
    The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid
    corecore