30 research outputs found

    Image Compression Using SPIHT with Modified Spatial Orientation Trees

    Get PDF
    AbstractA new way of reordering spatial orientation tree of SPIHT for improving compression efficiencies for monochrome and color images has been proposed. Reordering ensures that SPIHT algorithm codes more significant information in the initial bits. List of insignificant pixels and sets are initialized with fewer number of coefficients compared to conventional SPIHT for monochrome images. For color images an altered parent offspring relationship and an extra level of wavelet decomposition on chrominance planes were performed. PSNR improvement of 32.06% was achieved at 0.01 bpp for monochrome images and 19.76% for color images at 0.05 bpp compared to conventional schemes

    Wavelet-Based Embedded Rate Scalable Still Image Coders: A review

    Get PDF
    Embedded scalable image coding algorithms based on the wavelet transform have received considerable attention lately in academia and in industry in terms of both coding algorithms and standards activity. In addition to providing a very good coding performance, the embedded coder has the property that the bit stream can be truncated at any point and still decodes a reasonably good image. In this paper we present some state-of-the-art wavelet-based embedded rate scalable still image coders. In addition, the JPEG2000 still image compression standard is presented.

    A Lossy Colour Image Compression Using Integer Wavelet Transforms and Binary Plane Transform

    Get PDF
    In the recent period, image data compression is the major component of communication and storage systems where the uncompressed images requires considerable compression technique, which should be capable to reduce the crippling disadvantages of data transmission and image storage. In the research paper, the novel image compression technique is proposed which is based on the spatial domain and quite effective for the compression of images. However, the performance of the proposed methodology is compared with the conventional compression techniques (Joint Photographic Experts Group) JPEG and set partitioning in hierarchical trees (SPIHT) using the evaluation metrics compression ratio and peak signal to noise ratio. It is evaluated that Integer wavelets with binary plane technique is more effective compression technique than JPEG and SPIHT as it provided more efficient quality metrics values and visual quality

    Low Bit-rate Color Video Compression using Multiwavelets in Three Dimensions

    Get PDF
    In recent years, wavelet-based video compressions have become a major focus of research because of the advantages that it provides. More recently, a growing thrust of studies explored the use of multiple scaling functions and multiple wavelets with desirable properties in various fields, from image de-noising to compression. In term of data compression, multiple scaling functions and wavelets offer a greater flexibility in coefficient quantization at high compression ratio than a comparable single wavelet. The purpose of this research is to investigate the possible improvement of scalable wavelet-based color video compression at low bit-rates by using three-dimensional multiwavelets. The first part of this work included the development of the spatio-temporal decomposition process for multiwavelets and the implementation of an efficient 3-D SPIHT encoder/decoder as a common platform for performance evaluation of two well-known multiwavelet systems against a comparable single wavelet in low bitrate color video compression. The second part involved the development of a motion-compensated 3-D compression codec and a modified SPIHT algorithm designed specifically for this codec by incorporating an advantage in the design of 2D SPIHT into the 3D SPIHT coder. In an experiment that compared their performances, the 3D motion-compensated codec with unmodified 3D SPIHT had gains of 0.3dB to 4.88dB over regular 2D wavelet-based motion-compensated codec using 2D SPIHT in the coding of 19 endoscopy sequences at 1/40 compression ratio. The effectiveness of the modified SPIHT algorithm was verified by the results of a second experiment in which it was used to re-encode 4 of the 19 sequences with lowest performance gains and improved them by 0.5dB to 1.0dB. The last part of the investigation examined the effect of multiwavelet packet on 3-D video compression as well as the effects of coding multiwavelet packets based on the frequency order and energy content of individual subbands

    Rate scalable image compression in the wavelet domain

    Get PDF
    This thesis explores image compression in the wavelet transform domain. This the- sis considers progressive compression based on bit plane coding. The rst part of the thesis investigates the scalar quantisation technique for multidimensional images such as colour and multispectral image. Embedded coders such as SPIHT and SPECK are known to be very simple and e cient algorithms for compression in the wavelet do- main. However, these algorithms require the use of lists to keep track of partitioning processes, and such lists involve high memory requirement during the encoding process. A listless approach has been proposed for multispectral image compression in order to reduce the working memory required. The earlier listless coders are extended into three dimensional coder so that redundancy in the spectral domain can be exploited. Listless implementation requires a xed memory of 4 bits per pixel to represent the state of each transformed coe cient. The state is updated during coding based on test of sig- ni cance. Spectral redundancies are exploited to improve the performance of the coder by modifying its scanning rules and the initial marker/state. For colour images, this is done by conducting a joint the signi cant test for the chrominance planes. In this way, the similarities between the chrominance planes can be exploited during the cod- ing process. Fixed memory listless methods that exploit spectral redundancies enable e cient coding while maintaining rate scalability and progressive transmission. The second part of the thesis addresses image compression using directional filters in the wavelet domain. A directional lter is expected to improve the retention of edge and curve information during compression. Current implementations of hybrid wavelet and directional (HWD) lters improve the contour representation of compressed images, but su er from the pseudo-Gibbs phenomenon in the smooth regions of the images. A di erent approach to directional lters in the wavelet transforms is proposed to remove such artifacts while maintaining the ability to preserve contours and texture. Imple- mentation with grayscale images shows improvements in terms of distortion rates and the structural similarity, especially in images with contours. The proposed transform manages to preserve the directional capability without pseudo-Gibbs artifacts and at the same time reduces the complexity of wavelet transform with directional lter. Fur-ther investigation to colour images shows the transform able to preserve texture and curve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Colour image coding with wavelets and matching pursuit

    Get PDF
    This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud mรณvil) aboga por la integraciรณn masiva de las mรกs avanzadas tecnologรญas de comunicaciรณn, red mรณvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atenciรณn clรญnica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestiรณn de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestaciรณn de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crรณnicos y una notable disminuciรณn del gasto de los Sistemas de Salud gracias a la reducciรณn del nรบmero y la duraciรณn de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompaรฑadas del requisito de un alto grado de disponibilidad de la informaciรณn biomรฉdica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias seรฑales de un usuario para obtener un diagnรณstico mรกs preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitรบa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crรญtico para su รฉxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atenciรณn que otros requisitos tรฉcnicos que eran mรกs urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementaciรณn de polรญticas de seguridad sรณlidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la econรณmica (p.ej. sobrecostes por la inclusiรณn de hardware extra para la autenticaciรณn de usuarios), en el rendimiento (p.ej. reducciรณn de la eficiencia y de la interoperabilidad debido a la integraciรณn de elementos de seguridad) y en la usabilidad (p.ej. configuraciรณn mรกs complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal mรฉdico, personal tรฉcnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las caracterรญsticas de las distintas aplicaciones de m-Salud. Este esquema estรก compuesto por tres capas diferenciadas, diseรฑadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensiรณn de seguridad de aquellos protocolos estรกndar que permiten la adquisiciรณn, el intercambio y/o la administraciรณn de informaciรณn biomรฉdica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reรบnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estรกndares biomรฉdicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomรฉdicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carรกcter clรญnico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitรบa en paralelo a los anteriores, selecciona herramientas genรฉricas de seguridad (elementos de autenticaciรณn y criptogrรกficos) cuya integraciรณn en los otros bloques resulta idรณnea, y desarrolla nuevas herramientas de seguridad, basadas en seรฑal -- embedding y keytagging --, para reforzar la protecciรณn de los test biomรฉdicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    3D Wavelet Transformation for Visual Data Coding With Spatio and Temporal Scalability as Quality Artifacts: Current State Of The Art

    Get PDF
    Several techniques based on the threeโ€“dimensional (3-D) discrete cosine transform (DCT) have been proposed for visual data coding. These techniques fail to provide coding coupled with quality and resolution scalability, which is a significant drawback for contextual domains, such decease diagnosis, satellite image analysis. This paper gives an overview of several state-of-the-art 3-D wavelet coders that do meet these requirements and mainly investigates various types of compression techniques those exists, and putting it all together for a conclusion on further research scope

    ๋””์Šคํ”Œ๋ ˆ์ด ์žฅ์น˜๋ฅผ ์œ„ํ•œ ๊ณ ์ • ๋น„์œจ ์••์ถ• ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 2. ์ดํ˜์žฌ.๋””์Šคํ”Œ๋ ˆ์ด ์žฅ์น˜์—์„œ์˜ ์••์ถ• ๋ฐฉ์‹์€ ์ผ๋ฐ˜์ ์ธ ๋น„๋””์˜ค ์••์ถ• ํ‘œ์ค€๊ณผ๋Š” ๋‹ค๋ฅธ ๋ช‡ ๊ฐ€์ง€ ํŠน์ง•์ด ์žˆ๋‹ค. ์ฒซ์งธ, ํŠน์ˆ˜ํ•œ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ๋‘˜์งธ, ์••์ถ• ์ด๋“, ์†Œ๋น„ ์ „๋ ฅ, ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ๋“ฑ์„ ์œ„ํ•ด ํ•˜๋“œ์›จ์–ด ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ , ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์••์ถ•๋ฅ ์ด ๋‚ฎ๋‹ค. ์…‹์งธ, ๋ž˜์Šคํ„ฐ ์ฃผ์‚ฌ ์ˆœ์„œ์— ์ ํ•ฉํ•ด์•ผ ํ•œ๋‹ค. ๋„ท์งธ, ํ”„๋ ˆ์ž„ ๋ฉ”๋ชจ๋ฆฌ ํฌ๊ธฐ๋ฅผ ์ œํ•œ์‹œํ‚ค๊ฑฐ๋‚˜ ์ž„์˜ ์ ‘๊ทผ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์••์ถ• ๋‹จ์œ„๋‹น ๋ชฉํ‘œ ์••์ถ•๋ฅ ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ •ํ™•ํžˆ ๋งž์ถœ ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด์™€ ๊ฐ™์€ ํŠน์ง•์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์„ธ ๊ฐ€์ง€ ์••์ถ• ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜๋„๋ก ํ•œ๋‹ค. LCD ์˜ค๋ฒ„๋“œ๋ผ์ด๋ธŒ๋ฅผ ์œ„ํ•œ ์••์ถ• ๋ฐฉ์‹์œผ๋กœ๋Š” BTC(block truncation coding) ๊ธฐ๋ฐ˜์˜ ์••์ถ• ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋„๋ก ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์••์ถ• ์ด๋“์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ๋ชฉํ‘œ ์••์ถ•๋ฅ  12์— ๋Œ€ํ•œ ์••์ถ• ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋Š”๋ฐ, ์••์ถ• ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ด์›ƒํ•˜๋Š” ๋ธ”๋ก๊ณผ์˜ ๊ณต๊ฐ„์  ์—ฐ๊ด€์„ฑ์„ ์ด์šฉํ•˜์—ฌ ๋น„ํŠธ๋ฅผ ์ ˆ์•ฝํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘ ๋ฒˆ์งธ๋Š” ๋‹จ์ˆœํ•œ ์˜์—ญ์€ 2ร—16 ์ฝ”๋”ฉ ๋ธ”๋ก, ๋ณต์žกํ•œ ์˜์—ญ์€ 2ร—8 ์ฝ”๋”ฉ ๋ธ”๋ก์„ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. 2ร—8 ์ฝ”๋”ฉ ๋ธ”๋ก์„ ์ด์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋ชฉํ‘œ ์••์ถ•๋ฅ ์„ ๋งž์ถ”๊ธฐ ์œ„ํ•˜์—ฌ ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ ˆ์•ฝ๋œ ๋น„ํŠธ๋ฅผ ์ด์šฉํ•œ๋‹ค. ์ €๋น„์šฉ ๊ทผ์ ‘-๋ฌด์†์‹ค ํ”„๋ ˆ์ž„ ๋ฉ”๋ชจ๋ฆฌ ์••์ถ•์„ ์œ„ํ•œ ๋ฐฉ์‹์œผ๋กœ๋Š” 1D SPIHT(set partitioning in hierarchical trees) ๊ธฐ๋ฐ˜์˜ ์••์ถ• ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋„๋ก ํ•œ๋‹ค. SPIHT์€ ๊ณ ์ • ๋ชฉํ‘œ ์••์ถ•๋ฅ ์„ ๋งž์ถ”๋Š”๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ธ ์••์ถ• ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 1D ํ˜•ํƒœ์ธ 1D SPIHT์€ ๋ž˜์Šคํ„ฐ ์ฃผ์‚ฌ ์ˆœ์„œ์— ์ ํ•ฉํ•จ์—๋„ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์ด ์ง„ํ–‰๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ 1D SPIHT์˜ ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ ์ธ ์†๋„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1D SPIHT ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณ‘๋ ฌ์„ฑ์„ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ์ˆ˜์ •๋œ๋‹ค. ์ธ์ฝ”๋”์˜ ๊ฒฝ์šฐ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ๋ฐฉํ•ดํ•˜๋Š” ์˜์กด ๊ด€๊ณ„๊ฐ€ ํ•ด๊ฒฐ๋˜๊ณ , ํŒŒ์ดํ”„๋ผ์ธ ์Šค์ผ€์ฅด๋ง์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋œ๋‹ค. ๋””์ฝ”๋”์˜ ๊ฒฝ์šฐ ๋ณ‘๋ ฌ๋กœ ๋™์ž‘ํ•˜๋Š” ๊ฐ ํŒจ์Šค๊ฐ€ ๋””์ฝ”๋”ฉํ•  ๋น„ํŠธ์ŠคํŠธ๋ฆผ์˜ ๊ธธ์ด๋ฅผ ๋ฏธ๋ฆฌ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ˆ˜์ •๋œ๋‹ค. ๊ณ ์ถฉ์‹ค๋„(high-fidelity) RGBW ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€ ์••์ถ•์„ ์œ„ํ•œ ๋ฐฉ์‹์œผ๋กœ๋Š” ์˜ˆ์ธก ๊ธฐ๋ฐ˜์˜ ์••์ถ• ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋„๋ก ํ•œ๋‹ค. ์ œ์•ˆ ์˜ˆ์ธก ๋ฐฉ์‹์€ ๋‘ ๋‹จ๊ณ„์˜ ์ฐจ๋ถ„ ๊ณผ์ •์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๊ณต๊ฐ„์  ์—ฐ๊ด€์„ฑ์„ ์ด์šฉํ•˜๋Š” ๋‹จ๊ณ„์ด๊ณ , ๋‘ ๋ฒˆ์งธ๋Š” ์ธํ„ฐ-์ปฌ๋Ÿฌ ์—ฐ๊ด€์„ฑ์„ ์ด์šฉํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ์ฝ”๋”ฉ์˜ ๊ฒฝ์šฐ ์••์ถ• ํšจ์œจ์ด ๋†’์€ VLC(variable length coding) ๋ฐฉ์‹์„ ์ด์šฉํ•˜๋„๋ก ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ VLC ๋ฐฉ์‹์€ ๋ชฉํ‘œ ์••์ถ•๋ฅ ์„ ์ •ํ™•ํžˆ ๋งž์ถ”๋Š”๋ฐ ์–ด๋ ค์›€์ด ์žˆ์—ˆ์œผ๋ฏ€๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Golomb-Rice ์ฝ”๋”ฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ์ • ๊ธธ์ด ์••์ถ• ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋„๋ก ํ•œ๋‹ค. ์ œ์•ˆ ์ธ์ฝ”๋”๋Š” ํ”„๋ฆฌ-์ฝ”๋”์™€ ํฌ์Šคํ„ฐ-์ฝ”๋”๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ํ”„๋ฆฌ-์ฝ”๋”๋Š” ํŠน์ • ์ƒํ™ฉ์— ๋Œ€ํ•˜์—ฌ ์‹ค์ œ ์ธ์ฝ”๋”ฉ์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๋‹ค๋ฅธ ๋ชจ๋“  ์ƒํ™ฉ์— ๋Œ€ํ•œ ์˜ˆ์ธก ์ธ์ฝ”๋”ฉ ์ •๋ณด๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ํฌ์Šคํ„ฐ-์ฝ”๋”์— ์ „๋‹ฌํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํฌ์ŠคํŠธ-์ฝ”๋”๋Š” ์ „๋‹ฌ๋ฐ›์€ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ค์ œ ๋น„ํŠธ์ŠคํŠธ๋ฆผ์„ ์ƒ์„ฑํ•œ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋‚ด์šฉ 4 1.3 ๋…ผ๋ฌธ ๊ตฌ์„ฑ 8 ์ œ 2 ์žฅ ์ด์ „ ์—ฐ๊ตฌ 9 2.1 BTC 9 2.1.1 ๊ธฐ๋ณธ BTC ์•Œ๊ณ ๋ฆฌ์ฆ˜ 9 2.1.2 ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€ ์••์ถ•์„ ์œ„ํ•œ BTC ์•Œ๊ณ ๋ฆฌ์ฆ˜ 10 2.2 SPIHT 13 2.2.1 1D SPIHT ์•Œ๊ณ ๋ฆฌ์ฆ˜ 13 2.2.2 SPIHT ํ•˜๋“œ์›จ์–ด 17 2.3 ์˜ˆ์ธก ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ 19 2.3.1 ์˜ˆ์ธก ๋ฐฉ๋ฒ• 19 2.3.2 VLC 20 2.3.3 ์˜ˆ์ธก ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ํ•˜๋“œ์›จ์–ด 22 ์ œ 3 ์žฅ LCD ์˜ค๋ฒ„๋“œ๋ผ์ด๋ธŒ๋ฅผ ์œ„ํ•œ BTC 24 3.1 ์ œ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 24 3.1.1 ๋น„ํŠธ-์ ˆ์•ฝ ๋ฐฉ๋ฒ• 25 3.1.2 ๋ธ”๋ก ํฌ๊ธฐ ์„ ํƒ ๋ฐฉ๋ฒ• 29 3.1.3 ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์š”์•ฝ 31 3.2 ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 33 3.2.1 ํ”„๋ ˆ์ž„ ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค 34 3.2.2 ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”์˜ ๊ตฌ์กฐ 37 3.3 ์‹คํ—˜ ๊ฒฐ๊ณผ 44 3.3.1 ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ฑ๋Šฅ 44 3.3.2 ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๊ฒฐ๊ณผ 49 ์ œ 4 ์žฅ ์ €๋น„์šฉ ๊ทผ์ ‘-๋ฌด์†์‹ค ํ”„๋ ˆ์ž„ ๋ฉ”๋ชจ๋ฆฌ ์••์ถ•์„ ์œ„ํ•œ ๊ณ ์† 1D SPIHT 54 4.1 ์ธ์ฝ”๋” ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 54 4.1.1 ์˜์กด ๊ด€๊ณ„ ๋ถ„์„ ๋ฐ ์ œ์•ˆํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ ์Šค์ผ€์ฅด 54 4.1.2 ๋ถ„๋ฅ˜ ๋น„ํŠธ ์žฌ๋ฐฐ์น˜ 57 4.2 ๋””์ฝ”๋” ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 59 4.2.1 ๋น„ํŠธ์ŠคํŠธ๋ฆผ์˜ ์‹œ์ž‘ ์ฃผ์†Œ ๊ณ„์‚ฐ 59 4.2.2 ์ ˆ๋ฐ˜-ํŒจ์Šค ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• 63 4.3 ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ 65 4.4 ์‹คํ—˜ ๊ฒฐ๊ณผ 73 ์ œ 5 ์žฅ ๊ณ ์ถฉ์‹ค๋„ RGBW ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€ ์••์ถ•์„ ์œ„ํ•œ ๊ณ ์ • ์••์ถ•๋น„ VLC 81 5.1 ์ œ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 81 5.1.1 RGBW ์ธํ„ฐ-์ปฌ๋Ÿฌ ์—ฐ๊ด€์„ฑ์„ ์ด์šฉํ•œ ์˜ˆ์ธก ๋ฐฉ์‹ 82 5.1.2 ๊ณ ์ • ์••์ถ•๋น„๋ฅผ ์œ„ํ•œ Golomb-Rice ์ฝ”๋”ฉ 85 5.1.3 ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์š”์•ฝ 89 5.2 ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ 90 5.2.1 ์ธ์ฝ”๋” ๊ตฌ์กฐ 91 5.2.2 ๋””์ฝ”๋” ๊ตฌ์กฐ 95 5.3 ์‹คํ—˜ ๊ฒฐ๊ณผ 101 5.3.1 ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‹คํ—˜ ๊ฒฐ๊ณผ 101 5.3.2 ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๊ฒฐ๊ณผ 107 ์ œ 6 ์žฅ ์••์ถ• ์„ฑ๋Šฅ ๋ฐ ํ•˜๋“œ์›จ์–ด ํฌ๊ธฐ ๋น„๊ต ๋ถ„์„ 113 6.1 ์••์ถ• ์„ฑ๋Šฅ ๋น„๊ต 113 6.2 ํ•˜๋“œ์›จ์–ด ํฌ๊ธฐ ๋น„๊ต 120 ์ œ 7 ์žฅ ๊ฒฐ๋ก  125 ์ฐธ๊ณ ๋ฌธํ—Œ 128 ABSTRACT 135Docto
    corecore