819,328 research outputs found

    FpSynt: a fixed-point datapath synthesis tool for embedded systems

    Full text link
    Digital mobile systems must function with low power, small size and weight, and low cost. High-performance desktop microprocessors, with built-in floating point hardware, are not suitable in these cases. For embedded systems, it can be advantageous to implement these calculations with fixed point arithmetic instead. We present an automated fixed-point data path synthesis tool FpSynt for designing embedded applications in fixed-point domain with sufficient accuracy for most applications. FpSynt is available under the GNU General Public License from the following GitHub repository: http://github.com/izhbannikov/FPSYN

    An engineering approach to the use of expert systems technology in avionics applications

    Get PDF
    The concept of using a knowledge compiler to transform the knowledge base and inference mechanism of an expert system into a conventional program is presented. The need to accommodate real-time systems requirements in applications such as embedded avionics is outlined. Expert systems and a brief comparison of expert systems and conventional programs are reviewed. Avionics applications of expert systems are discussed before the discussions of applying the proposed concept to example systems using forward and backward chaining

    Supporting Read/Write Applications in Embedded Real-time Systems via Suspension-aware Analysis

    Full text link
    In many embedded real-time systems, applications often interact with I/O devices via read/write operations, which may incur considerable suspension delays. Unfortunately, prior analysis methods for validating timing correctness in embedded systems become quite pessimistic when suspension delays are present. In this paper, we consider the problem of supporting two common types of I/O applications in a multiprocessor system, that is, write-only applications and read-write applications. For the write-only application model, we present a much improved analysis technique that results in only O(m) suspension-related utilization loss, where m is the number of processors. For the second application model, we present a flexible I/O placement strategy and a corresponding new scheduling algorithm, which can completely circumvent the negative impact due to read- and write-induced suspension delays. We illustrate the feasibility of the proposed I/O-placement-based schedule via a case study implementation. Furthermore, experiments presented herein show that the improvement with respect to system utilization over prior methods is often significant

    Review of battery powered embedded systems design for mission-critical low-power applications

    No full text
    The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems
    • …
    corecore