52 research outputs found

    Towards Natural Control of Artificial Limbs

    Get PDF
    The use of implantable electrodes has been long thought as the solution for a more natural control of artificial limbs, as these offer access to long-term stable and physiologically appropriate sources of control, as well as the possibility to elicit appropriate sensory feedback via neurostimulation. Although these ideas have been explored since the 1960’s, the lack of a long-term stable human-machine interface has prevented the utilization of even the simplest implanted electrodes in clinically viable limb prostheses.In this thesis, a novel human-machine interface for bidirectional communication between implanted electrodes and the artificial limb was developed and clinically implemented. The long-term stability was achieved via osseointegration, which has been shown to provide stable skeletal attachment. By enhancing this technology as a communication gateway, the longest clinical implementation of prosthetic control sourced by implanted electrodes has been achieved, as well as the first in modern times. The first recipient has used it uninterruptedly in daily and professional activities for over one year. Prosthetic control was found to improve in resolution while requiring less muscular effort, as well as to be resilient to motion artifacts, limb position, and environmental conditions.In order to support this work, the literature was reviewed in search of reliable and safe neuromuscular electrodes that could be immediately used in humans. Additional work was conducted to improve the signal-to-noise ratio and increase the amount of information retrievable from extraneural recordings. Different signal processing and pattern recognition algorithms were investigated and further developed towards real-time and simultaneous prediction of limb movements. These algorithms were used to demonstrate that higher functionality could be restored by intuitive control of distal joints, and that such control remains viable over time when using epimysial electrodes. Lastly, the long-term viability of direct nerve stimulation to produce intuitive sensory feedback was also demonstrated.The possibility to permanently and reliably access implanted electrodes, thus making them viable for prosthetic control, is potentially the main contribution of this work. Furthermore, the opportunity to chronically record and stimulate the neuromuscular system offers new venues for the prediction of complex limb motions and increased understanding of somatosensory perception. Therefore, the technology developed here, combining stable attachment with permanent and reliable human-machine communication, is considered by the author as a critical step towards more functional artificial limbs

    Neuromusculoskeletal interfacing of lower limb prostheses

    Get PDF
    The method of bone-anchored attachment of limb prostheses via a percutaneous skeletal extension was developed to circumvent commonly reported problems associated with the conventional method of socket attachment. In addition to the direct structural connection, the percutaneous implant may serve as a conduit for bidirectional communication between muscles and nerves within the residual limb and the prosthesis. Implanted electrodes recording myoelectric activity within the residual limb can be used to infer the user’s movement intent and may thus be used to provide intuitive control of the prosthesis in real time. Sensory feedback from the prosthesis can be provided back to the user by neurostimulation via implanted neural electrodes, thus closing the control loop. Together the skeletal, neural, and muscular interfaces form a neuromusculoskeletal interface. This technology is currently being evaluated in a clinical trial on individuals with upper limb amputation, but it has not yet been used in the lower limb. The aim of this thesis has been to translate the concept of neuromusculoskeletal interfacing to the lower limb. An additional aim has been to reduce the limitations on high impact activities, that exist on current available systems for bone-anchored attachment of limb prostheses. To achieve these aims, a new design of the neuromusculoskeletal interface was developed where the structural capacity was increased with respect to current versions of the implant system to accommodate increased loads for highly active usage by individuals with lower limb amputation. In order to set adequate design requirements, investigations were conducted to determine the load exposure of bone-anchored implant systems during a number of loadbearing activities. Structural verification of the neuromusculoskeletal interface has been performed using numerical simulations as well as physical testing in static and dynamic conditions. The first steps towards clinical implementation of the lower limb neuromusculoskeletal interface have been taken by the development of a clinical research protocol that has been approved by the Swedish Ethical Review Authority

    Neuromusculoskeletal Arm Prostheses: Personal and Social Implications of Living With an Intimately Integrated Bionic Arm

    Get PDF
    People with limb loss are for the first time living chronically and uninterruptedly with intimately integrated neuromusculoskeletal prostheses. This new generation of artificial limbs are fixated to the skeleton and operated by bidirectionally transferred neural information. This unprecedented level of human–machine integration is bound to have profound psychosocial effects on the individuals living with these prostheses. Here, we examined the psychosociological impact on people as they integrate neuromusculoskeletal prostheses into their bodies and lives. Three people with transhumeral amputations participated in this study, all of whom had been living with neuromusculoskeletal prostheses in their daily lives between 2 and 6 years at the time of the interview. Direct neural sensory feedback had been enabled for 6 months to 2 years. Participants were interviewed about their experiences living with the neuromusculoskeletal prostheses in their home and professional daily lives. We analyzed these interviews to elucidate themes using an interpretive phenomenological approach that regards participants’ own experiences as forms of expertise and knowledge-making. Our participant-generated results indicate that people adapted and integrated the technology into functional and social arenas of daily living, with positive psychosocial effects on self-esteem, self-image, and social relations intimately linked to improved trust of the prostheses. Participants expressed enhanced prosthetic function, increased and more diverse prosthesis use in tasks of daily living, and improved relationships between their prosthesis and phantom limb. Our interviews with patients also generated critiques of the language commonly used to describe human-prosthetic relations, including terms such as “embodiment,” and the need for specificity surrounding the term “natural” with regard to control versus sensory feedback. Experiences living with neuromusculoskeletal prostheses were complex and subject-dependent, and therefore future research should consider human–machine interaction as a relationship that is constantly enacted, negotiated, and deeply contextualized

    Towards clinically viable neuromuscular control of bone-anchored prosthetic arms with sensory feedback

    Get PDF
    Promising developments are currently ongoing worldwide in the field of neuroprosthetics and artificial limb control. It is now possible to chronically connect a robotic limb to bone, nerves, and muscles of a human being, and to use the signals sourced from these connections to enable movements of the artificial limb. It is also possible to surgically redirect a nerve, deprived from its original target muscle due to amputation, to a new target in order to restore the original motor functionality. Intelligent signal processing algorithms can now utilize the bioelectric signals gathered from remaining muscles on the stump to decode the motor intention of the amputee, providing an intuitive control interface. Unfortunately, clinical implementations still lag behind the advancements made in research, and the conventional solutions for amputees have remained largely unchanged for decades. More efforts are needed from researchers to close the gap between scientific developments and clinical practices.This thesis ultimately focuses on the intuitive control of a prosthetic upper limb. In the first part of this doctoral project, an embedded system capable of prosthetic control via the processing of bioelectric signals and pattern recognition algorithms was developed. The design included a neurostimulator to provide direct neural feedback modulated by sensory information from artificial sensors. The system was designed towards clinical implementation and its functionality was proven by its use by amputee subjects in daily life. This system was then used during the second part of the doctoral project as a research platform to monitor prosthesis usage and training, machine learning based control algorithms, and neural stimulation paradigms for tactile sensory feedback. Within this work, a novel method for interfacing a multi-grip prosthetic hand to facilitate posture selection via pattern recognition was proposed. Moreover, the need for tactile sensory feedback was investigated in order to restore natural grasping behavior in amputees. Notably, the benefit for motor coordination of somatotopic tactile feedback achieved via direct neural stimulation was demonstrated. The findings and the technology developed during this project open to the clinical use of a new class of prosthetic arms that are directly connected to the neuromusculoskeletal system, intuitively controlled and capable of tactile sensory feedback

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations With Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent “electric” or “tingling” character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency (“patterned stimulation”). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes

    Get PDF
    : Remnant muscles in the residual limb after amputation are the most common source of control signals for prosthetic hands, because myoelectric signals can be generated by the user at will. However, for individuals with amputation higher up the arm, such as an above-elbow (transhumeral) amputation, insufficient muscles remain to generate myoelectric signals to enable control of the lost arm and hand joints, thus making intuitive control of wrist and finger prosthetic joints unattainable. We show that severed nerves can be divided along their fascicles and redistributed to concurrently innervate different types of muscle targets, particularly native denervated muscles and nonvascularized free muscle grafts. We engineered these neuromuscular constructs with implanted electrodes that were accessible via a permanent osseointegrated interface, allowing for bidirectional communication with the prosthesis while also providing direct skeletal attachment. We found that the transferred nerves effectively innervated their new targets as shown by a gradual increase in myoelectric signal strength. This allowed for individual flexion and extension of all five fingers of a prosthetic hand by a patient with a transhumeral amputation. Improved prosthetic function in tasks representative of daily life was also observed. This proof-of-concept study indicates that motor neural commands can be increased by creating electro-neuromuscular constructs using distributed nerve transfers to different muscle targets with implanted electrodes, enabling improved control of a limb prosthesis

    Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses

    Get PDF
    Conventional prosthetic arms suffer from poor controllability and lack of sensory feedback. Owing to the absence of tactile sensory information, prosthetic users must rely on incidental visual and auditory cues. In this study, we investigated the effect of providing tactile perception on motor coordination during routine grasping and grasping under uncertainty. Three transhumeral amputees were implanted with an osseointegrated percutaneous implant system for direct skeletal attachment and bidirectional communication with implanted neuromuscular electrodes. This neuromusculoskeletal prosthesis is a novel concept of artificial limb replacement that allows to extract control signals from electrodes implanted on viable muscle tissue, and to stimulate severed afferent nerve fibers to provide somatosensory feedback. Subjects received tactile feedback using three biologically inspired stimulation paradigms while performing a pick and lift test. The grasped object was instrumented to record grasping and lifting forces and its weight was either constant or unexpectedly changed in between trials. The results were also compared to the no-feedback control condition. Our findings confirm, in line with the neuroscientific literature, that somatosensory feedback is necessary for motor coordination during grasping. Our results also indicate that feedback is more relevant under uncertainty, and its effectiveness can be influenced by the selected neuromodulation paradigm and arguably also the prior experience of the prosthesis user

    The Use of Skeletal Muscle to Amplify Action Potentials in Transected Peripheral Nerves

    Get PDF
    Upper limb amputees suffer with problems associated with control and attachment of prostheses. Skin-surface electrodes placed over the stump, which detect myoelectric signals, are traditionally used to control hand movements. However, this method is unintuitive, the electrodes lift-off, and signal selectivity can be an issue. One solution to these limitations is to implant electrodes directly on muscles. Another approach is to implant electrodes directly into the nerves that innervate the muscles. A significant challenge with both solutions is the reliable transmission of biosignals across the skin barrier. In this thesis, I investigated the use of implantable muscle electrodes in an ovine model using myoelectrodes in combination with a bone-anchor, acting as a conduit for signal transmission. High-quality readings were obtained which were significantly better than skin-surface electrode readings. I further investigated the effect of electrode configurations to achieve the best signal quality. For direct recording from nerves, I tested the effect of adsorbed endoneural basement membrane proteins on nerve regeneration in vivo using microchannel neural interfaces implanted in rat sciatic nerves. Muscle and nerve signal recordings were obtained and improvements in sciatic nerve function were observed. Direct skeletal fixation of a prosthesis to the amputation stump using a bone-anchor has been proposed as a solution to skin problems associated with traditional socket-type prostheses. However, there remains a concern about the risk of infection between the implant and skin. Achieving a durable seal at this interface is therefore crucial, which formed the final part of the thesis. Bone-anchors were optimised for surface pore size and coatings to facilitate binding of human dermal fibroblasts to optimise skin-implant seal in an ovine model. Implants silanised with Arginine-Glycine-Aspartic Acid experienced significantly increased dermal tissue infiltration. This approach may therefore improve the soft tissue seal, and thus success of bone-anchored implants. By addressing both the way prostheses are attached to the amputation stump, by way of direct skeletal fixation, as well as providing high fidelity biosignals for high-level intuitive prosthetic control, I aim to further the field of limb loss rehabilitation

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent 'electric' or 'tingling' character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency ('patterned stimulation'). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Case Studies in Neuroscience: Sensations elicited and discrimination ability from nerve cuff stimulation in an amputee over time

    Get PDF
    International audienceThe present case study details sensations elicited by electrical stimulation of peripheral nerve axons using an implanted nerve cuff electrode, in a participant with a transhumeral amputation. The participant uses an osseointegrated electromechanical interface, which enables skeletal attachment of the prosthesis and long-term, stable, bidirectional communication between the implanted electrodes and prosthetic arm. We focused on evoking somatosensory percepts, where we tracked and quantified the evolution of perceived sensations in the missing hand, which were evoked from electrical stimulation of the nerve, for over 2 yr. These sensations included small, pointlike areas of either vibration or pushing, to larger sensations over wider areas, indicating the recruitment of a few and many afferents, respectively. Furthermore, we used a two-alternative forced choice paradigm to measure the level of discrimination between trains of brief electrical stimuli, to gauge what the participant could reliably distinguish between. At best, the participant was able to distinguish a 0.5-Hz difference and on average acquired a 3.8-Hz just-noticeable difference at a more stringent psychophysical level. The current work shows the feasibility for long-term sensory feedback in prostheses, via electrical axonal stimulation, where small and relatively stable percepts were felt that may be used to deliver graded sensory feedback. This opens up opportunities for signaling feedback during movements (e.g., for precision grip), but also for conveying more complex cutaneous sensations, such as texture
    • …
    corecore