8,719 research outputs found

    Formal and efficient verification techniques for Real-Time UML models

    Get PDF
    The real-time UML profile TURTLE has a formal semantics expressed by translation into a timed process algebra: RT-LOTOS. RTL, the formal verification tool developed for RT-LOTOS, was first used to check TURTLE models against design errors. This paper opens new avenues for TURTLE model verification. It shows how recent work on translating RT-LOTOS specifications into Time Petri net model may be applied to TURTLE. RT-LOTOS to TPN translation patterns are presented. Their formal proof is the subject of another paper. These patterns have been implemented in a RT-LOTOS to TPN translator which has been interfaced with TINA, a Time Petri Net Analyzer which implements several reachability analysis procedures depending on the class of property to be verified. The paper illustrates the benefits of the TURTLE->RT-LOTOS->TPN transformation chain on an avionic case study

    From RT-LOTOS to Time Petri Nets new foundations for a verification platform

    Get PDF
    The formal description technique RT-LOTOS has been selected as intermediate language to add formality to a real-time UML profile named TURTLE. For this sake, an RT-LOTOS verification platform has been developed for early detection of design errors in real-time system models. The paper discusses an extension of the platform by inclusion of verification tools developed for Time Petri Nets. The starting point is the definition of RT-LOTOS to TPN translation patterns. In particular, we introduce the concept of components embedding Time Petri Nets. The translation patterns are implemented in a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN in the format admitted by the TINA tool. The efficiency of the proposed solution has been demonstrated on various case studies

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented
    • …
    corecore