1,159 research outputs found

    Optimized FPGA Implementation of Model Predictive Control for Embedded Systems Using High-Level Synthesis Tool

    Get PDF
    Model predictive control (MPC) is an optimization-based strategy for high-performance control that is attracting increasing interest. While MPC requires the online solution of an optimization problem, its ability to handle multivariable systems and constraints makes it a very powerful control strategy specially for MPC of embedded systems, which have an ever increasing amount of sensing and computation capabilities. We argue that the implementation of MPC on field programmable gate arrays (FPGAs) using automatic tools is nowadays possible, achieving cost-effective successful applications on fast or resource-constrained systems. The main burden for the implementation of MPC on FPGAs is the challenging design of the necessary algorithms. We outline an approach to achieve a software-supported optimized implementation of MPC on FPGAs using high-level synthesis tools and automatic code generation. The proposed strategy exploits the arithmetic operations necessaries to solve optimization problems to tailor an FPGA design, which allows a tradeoff between energy, memory requirements, cost, and achievable speed. We show the capabilities and the simplicity of use of the proposed methodology on two different examples and illustrate its advantages over a microcontroller implementation

    Graphical FPGA design for a predictive controller with application to spacecraft rendezvous

    Get PDF
    A reconfigurable field-programmable gate array (FPGA)-based predictive controller based on Nesterov’s fast gradient method is designed using Simulink and converted to VHDL using Mathworks’ HDL Coder. The implementation is verified by application to a spacecraft rendezvous and capture scenario, with communication between the FPGA and a simulation of the relative dynamics occuring over Ethernet. For a problem with 120 decision variables and 240 constraints, computation times of 0.95 ms are achieved with a clock rate of 50 MHz, corresponding to a speed up of more than 2000 over running the algorithm directly on a MicroBlaze microprocessor implemented on the same FPGA.This work was supported by the Engineering and Physical Sciences Research Council (Grant EP/G030308/1) as well as industrial support from Xilinx, Mathworks and the European Space Agency.52nd IEEE Conference on Decision and Control, December 10-13, 2013, Palazzo dei Congressi, Florence, Italy

    Fixed-point implementation of a proximal Newton method for embedded model predictive control (I)

    Get PDF
    Extending the success of model predictive control (MPC) technologies in embedded applications heavily depends on the capability of improving quadratic programming (QP) solvers. Improvements can be done in two directions: better algorithms that reduce the number of arithmetic operations required to compute a solution, and more efficient architectures in terms of speed, power consumption, memory occupancy and cost. This paper proposes a fixed point implementation of a proximal Newton method to solve optimization problems arising in input-constrained MPC. The main advantages of the algorithm are its fast asymptotic convergence rate and its relatively low computational cost per iteration since it the solution of a small linear system is required. A detailed analysis on the effects of quantization errors is presented, showing the robustness of the algorithm with respect to finite-precision computations. A hardware implementation with specific optimizations to minimize computation times and memory footprint is also described, demonstrating the viability of low-cost, low-power controllers for high-bandwidth MPC applications. The algorithm is shown to be very effective for embedded MPC applications through a number of simulation experiments

    Predictive control using an FPGA with application to aircraft control

    Get PDF
    Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a ``system-on-a-chip'' MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC.This work was supported by EPSRC (Grants EP/G030308/1, EP/G031576/1 and EP/I012036/1) and the EU FP7 Project EMBOCON grant agreement number FP7-ICT-2009-4 248940, as well as industrial support from Xilinx, the Mathworks, and the European Space Agency.This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at: http://dx.doi.org/10.1109/TCST.2013.2271791. Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing [email protected]
    • …
    corecore