3,338 research outputs found

    Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video

    Get PDF
    Object detection is considered one of the most challenging problems in this field of computer vision, as it involves the combination of object classification and object localization within a scene. Recently, deep neural networks (DNNs) have been demonstrated to achieve superior object detection performance compared to other approaches, with YOLOv2 (an improved You Only Look Once model) being one of the state-of-the-art in DNN-based object detection methods in terms of both speed and accuracy. Although YOLOv2 can achieve real-time performance on a powerful GPU, it still remains very challenging for leveraging this approach for real-time object detection in video on embedded computing devices with limited computational power and limited memory. In this paper, we propose a new framework called Fast YOLO, a fast You Only Look Once framework which accelerates YOLOv2 to be able to perform object detection in video on embedded devices in a real-time manner. First, we leverage the evolutionary deep intelligence framework to evolve the YOLOv2 network architecture and produce an optimized architecture (referred to as O-YOLOv2 here) that has 2.8X fewer parameters with just a ~2% IOU drop. To further reduce power consumption on embedded devices while maintaining performance, a motion-adaptive inference method is introduced into the proposed Fast YOLO framework to reduce the frequency of deep inference with O-YOLOv2 based on temporal motion characteristics. Experimental results show that the proposed Fast YOLO framework can reduce the number of deep inferences by an average of 38.13%, and an average speedup of ~3.3X for objection detection in video compared to the original YOLOv2, leading Fast YOLO to run an average of ~18FPS on a Nvidia Jetson TX1 embedded system

    Deep Learning in the Automotive Industry: Applications and Tools

    Full text link
    Deep Learning refers to a set of machine learning techniques that utilize neural networks with many hidden layers for tasks, such as image classification, speech recognition, language understanding. Deep learning has been proven to be very effective in these domains and is pervasively used by many Internet services. In this paper, we describe different automotive uses cases for deep learning in particular in the domain of computer vision. We surveys the current state-of-the-art in libraries, tools and infrastructures (e.\,g.\ GPUs and clouds) for implementing, training and deploying deep neural networks. We particularly focus on convolutional neural networks and computer vision use cases, such as the visual inspection process in manufacturing plants and the analysis of social media data. To train neural networks, curated and labeled datasets are essential. In particular, both the availability and scope of such datasets is typically very limited. A main contribution of this paper is the creation of an automotive dataset, that allows us to learn and automatically recognize different vehicle properties. We describe an end-to-end deep learning application utilizing a mobile app for data collection and process support, and an Amazon-based cloud backend for storage and training. For training we evaluate the use of cloud and on-premises infrastructures (including multiple GPUs) in conjunction with different neural network architectures and frameworks. We assess both the training times as well as the accuracy of the classifier. Finally, we demonstrate the effectiveness of the trained classifier in a real world setting during manufacturing process.Comment: 10 page

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201
    • …
    corecore