26,875 research outputs found

    A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Get PDF
    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control

    Combining Time-Triggered Plans with Priority Scheduled Task Sets

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39083-3_13Time-triggered and concurrent priority-based scheduling are the two major approaches in use for real-time and embedded systems. Both approaches have their own advantages and drawbacks. On the one hand, priority-based systems facilitate separation of concerns between functional and timing requirements by relying on an underlying real- time operating system that takes all scheduling decisions at run time. But this is at the cost of indeterminism in the exact timing pattern of execution of activities, namely variable release jitter. On the other hand, time-triggered schedules are more intricate to design since all schedul- ing decisions must be taken beforehand in the design phase, but their advantage is determinism and more chances for minimisation of release jitter. In this paper we propose a software architecture that enables the combined and controlled execution of time-triggered plans and priority- scheduled tasks. We also describe the implementation of an Ada library supporting it. Our aim is to take advantage of the best of both ap- proaches by providing jitter-controlled execution of time-triggered tasks (e.g., control tasks), coexisting with a set of priority-scheduled tasks, with less demanding jitter requirements.This work has been partly supported by the Spanish Government’s project M2C2 (TIN2014-56158-C4-1-P-AR) and the European Commission’s project EMC2 (ARTEMIS-JU Call 2013 AIPP-5, Contract 621429).Real Sáez, JV.; Sáez Barona, S.; Crespo, A. (2016). Combining Time-Triggered Plans with Priority Scheduled Task Sets. En Reliable Software Technologies – Ada-Europe 2016. Springer. 195-212. https://doi.org/10.1007/978-3-319-39083-3_13S195212Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM 20(1), 46–61 (1973)Martí, P., Fuertes, J., Fohler, G.: Jitter compensation for real-time control systems. In: Real-Time Systems Symposium (2001)Dobrin, R.: Combining off-line schedule construction and fixed priority scheduling in real-time computer systems. Ph.D. thesis. Mälardalen University (2005)Cervin, A.: Integrated control and real-time scheduling. Ph.D. thesis. Lund Institute of Technology, April 2003Balbastre, P., Ripoll, I., Vidal, J., Crespo, A.: A task model to reduce control delays. Real-Time Syst. 27(3), 215–236 (2004)Hong, S., Hu, X., Lemmon, M.: Reducing delay jitter of real-time control tasks through adaptive deadline adjustments. In: 22nd Euromicro Conference on Real-Time Systems - ECRTS, pp. 229–238. IEEE Computer Society (2010)ISO/IEC-JTC1-SC22-WG9: Ada Reference Manual ISO/IEC 8652:2012(E) (2012). http://www.ada-europe.org/manuals/LRM-2012.pdfBaker, T.P., Shaw, A.: The cyclic executive model and Ada. In: Proceedings IEEE Real Time Systems Symposium 1988, Huntsville, Alabama, pp. 120–129 (1988)Liu, J.W.S.: Real-Time Systems. Prentice-Hall Inc., Upper Saddle River (2000)Pont, M.J.: The Engineering of Reliable Embedded Systems: LPC1769. SafeTTy Systems Limited, Skelmersdale (2014). ISBN: 978-0-9930355-0-0Aldea Rivas, M., González Harbour, M.: MaRTE OS: an Ada kernel for real-time embedded applications. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001. LNCS, vol. 2043, pp. 305–316. Springer, Heidelberg (2001)Palencia, J., González-Harbour, M.: Schedulability analysis for tasks with static and dynamic offsets. In: 9th IEEE Real-Time Systems Symposium (1998)Wellings, A.J., Burns, A.: A framework for real-time utilities for Ada 2005. Ada Lett. XXVI XXVII(2), 41–47 (2007)Real, J., Crespo, A.: Incorporating operating modes to an Ada real-time framework. Ada Lett. 30(1), 73–85 (2010)Sáez, S., Terrasa, S., Crespo, A.: A real-time framework for multiprocessor platforms using Ada 2012. In: Romanovsky, A., Vardanega, T. (eds.) Ada-Europe 2011. LNCS, vol. 6652, pp. 46–60. Springer, Heidelberg (2011

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    ART-Ada design project, phase 2

    Get PDF
    Interest in deploying expert systems in Ada has increased. An Ada based expert system tool is described called ART-Ada, which was built to support research into the language and methodological issues of expert systems in Ada. ART-Ada allows applications of an existing expert system tool called ART-IM (Automated Reasoning Tool for Information Management) to be deployed in various Ada environments. ART-IM, a C-based expert system tool, is used to generate Ada source code which is compiled and linked with an Ada based inference engine to produce an Ada executable image. ART-Ada is being used to implement several expert systems for NASA's Space Station Freedom Program and the U.S. Air Force

    A software development environment utilizing PAMELA

    Get PDF
    Hardware capability and efficiency has increased dramatically since the invention of the computer, while software programmer productivity and efficiency has remained at a relatively low level. A user-friendly, adaptable, integrated software development environment is needed to alleviate this problem. The environment should be designed around the Ada language and a design methodology which takes advantage of the features of the Ada language as the Process Abstraction Method for Embedded Large Applications (PAMELA)
    • …
    corecore