41 research outputs found

    The equational theory of the natural join and inner union is decidable

    Full text link
    The natural join and the inner union operations combine relations of a database. Tropashko and Spight [24] realized that these two operations are the meet and join operations in a class of lattices, known by now as the relational lattices. They proposed then lattice theory as an algebraic approach to the theory of databases, alternative to the relational algebra. Previous works [17, 22] proved that the quasiequational theory of these lattices-that is, the set of definite Horn sentences valid in all the relational lattices-is undecidable, even when the signature is restricted to the pure lattice signature. We prove here that the equational theory of relational lattices is decidable. That, is we provide an algorithm to decide if two lattice theoretic terms t, s are made equal under all intepretations in some relational lattice. We achieve this goal by showing that if an inclusion t ≤\le s fails in any of these lattices, then it fails in a relational lattice whose size is bound by a triple exponential function of the sizes of t and s.Comment: arXiv admin note: text overlap with arXiv:1607.0298

    Most simple extensions of FLe\mathsf{FL_e} are undecidable

    Full text link
    All known structural extensions of the substructural logic FLe\mathsf{FL_e}, Full Lambek calculus with exchange/commutativity, (corresponding to subvarieties of commutative residuated lattices axiomatized by {∨,⋅,1}\{\vee, \cdot, 1\}-equations) have decidable theoremhood; in particular all the ones defined by knotted axioms enjoy strong decidability properties (such as the finite embeddability property). We provide infinitely many such extensions that have undecidable theoremhood, by encoding machines with undecidable halting problem. An even bigger class of extensions is shown to have undecidable deducibility problem (the corresponding varieties of residuated lattices have undecidable word problem); actually with very few exceptions, such as the knotted axioms and the other prespinal axioms, we prove that undecidability is ubiquitous. Known undecidability results for non-commutative extensions use an encoding that fails in the presence of commutativity, so and-branching counter machines are employed. Even these machines provide encodings that fail to capture proper extensions of commutativity, therefore we introduce a new variant that works on an exponential scale. The correctness of the encoding is established by employing the theory of residuated frames.Comment: 45 page

    Some Undecidable Problems on Representability as Binary Relations

    Get PDF
    We establish the undecidability of representability and of finite representability as algebras of binary relations in a wide range of signatures. In particular, representability and finite representability are undecidable for Boolean monoids and lattice ordered monoids, while representability is undecidable for J onsson's relation algebra. We also establish a number of undecidability results for representability as algebras of injective functions

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≤t\leq_t on the set G\mathcal{G} such that (G,≤t\mathcal{G},\leq_t) is isomorphic to (N,≤\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≤\mathcal{G},\leq) where ≤\leq is a partial order. We show that the subgraph order i.e. (G,≤s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≤i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≤m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity
    corecore