40 research outputs found

    Accelerating self-consistent field iterations in Kohn-Sham density functional theory using a low rank approximation of the dielectric matrix

    Full text link
    We present an efficient preconditioning technique for accelerating the fixed point iteration in real-space Kohn-Sham density functional theory (DFT) calculations. The preconditioner uses a low rank approximation of the dielectric matrix (LRDM) based on G\^ateaux derivatives of the residual of fixed point iteration along appropriately chosen direction functions. We develop a computationally efficient method to evaluate these G\^ateaux derivatives in conjunction with the Chebyshev filtered subspace iteration procedure, an approach widely used in large-scale Kohn-Sham DFT calculations. Further, we propose a variant of LRDM preconditioner based on adaptive accumulation of low-rank approximations from previous SCF iterations, and also extend the LRDM preconditioner to spin-polarized Kohn-Sham DFT calculations. We demonstrate the robustness and efficiency of the LRDM preconditioner against other widely used preconditioners on a range of benchmark systems with sizes ranging from ∼\sim 100-1100 atoms (∼\sim 500--20,000 electrons). The benchmark systems include various combinations of metal-insulating-semiconducting heterogeneous material systems, nanoparticles with localized dd orbitals near the Fermi energy, nanofilm with metal dopants, and magnetic systems. In all benchmark systems, the LRDM preconditioner converges robustly within 20--30 iterations. In contrast, other widely used preconditioners show slow convergence in many cases, as well as divergence of the fixed point iteration in some cases. Finally, we demonstrate the computational efficiency afforded by the LRDM method, with up to 3.4×\times reduction in computational cost for the total ground-state calculation compared to other preconditioners.Comment: Accepted in Physical Review

    On the Analysis of the Discretized Kohn-Sham Density Functional Theory

    Full text link
    In this paper, we study a few theoretical issues in the discretized Kohn-Sham (KS) density functional theory (DFT). The equivalence between either a local or global minimizer of the KS total energy minimization problem and the solution to the KS equation is established under certain assumptions. The nonzero charge densities of a strong local minimizer are shown to be bounded below by a positive constant uniformly. We analyze the self-consistent field (SCF) iteration by formulating the KS equation as a fixed point map with respect to the potential. The Jacobian of these fixed point maps is derived explicitly. Both global and local convergence of the simple mixing scheme can be established if the gap between the occupied states and unoccupied states is sufficiently large. This assumption can be relaxed if the charge density is computed using the Fermi-Dirac distribution and it is not required if there is no exchange correlation functional in the total energy functional. Although our assumption on the gap is very stringent and is almost never satisfied in reality, our analysis is still valuable for a better understanding of the KS minimization problem, the KS equation and the SCF iteration.Comment: 29 page

    Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

    Full text link
    Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. We demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.Comment: Version 2 (with minor edits from version 1
    corecore