17,260 research outputs found

    Multigrid elliptic equation solver with adaptive mesh refinement

    Full text link
    In this paper we describe in detail the computational algorithm used by our parallel multigrid elliptic equation solver with adaptive mesh refinement. Our code uses truncation error estimates to adaptively refine the grid as part of the solution process. The presentation includes a discussion of the orders of accuracy that we use for prolongation and restriction operators to ensure second order accurate results and to minimize computational work. Code tests are presented that confirm the overall second order accuracy and demonstrate the savings in computational resources provided by adaptive mesh refinement.Comment: 12 pages, 9 figures, Modified in response to reviewer suggestions, added figure, added references. Accepted for publication in J. Comp. Phy

    VAGO method for the solution of elliptic second-order boundary value problems

    Get PDF
    Mathematical physics problems are often formulated using differential oprators of vector analysis - invariant operators of first order, namely, divergence, gradient and rotor operators. In approximate solution of such problems it is natural to employ similar operator formulations for grid problems, too. The VAGO (Vector Analysis Grid Operators) method is based on such a methodology. In this paper the vector analysis difference operators are constructed using the Delaunay triangulation and the Voronoi diagrams. Further the VAGO method is used to solve approximately boundary value problems for the general elliptic equation of second order. In the convection-diffusion-reaction equation the diffusion coefficient is a symmetric tensor of second order

    A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems

    Get PDF
    We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underling partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented

    A posteriori error control for fully discrete Crank–Nicolson schemes

    Get PDF
    We derive residual-based a posteriori error estimates of optimal order for fully discrete approximations for linear parabolic problems. The time discretization uses the Crank--Nicolson method, and the space discretization uses finite element spaces that are allowed to change in time. The main tool in our analysis is the comparison with an appropriate reconstruction of the discrete solution, which is introduced in the present paper

    High-order numerical methods for 2D parabolic problems in single and composite domains

    Get PDF
    In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests-with respect to accuracy and convergence-for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin
    corecore