9,838 research outputs found

    An Implementation of Digital Signature and Key Agreement on IEEE802.15.4 WSN Embedded Device

    Get PDF
    A wireless sensor network (WSN) now becomes popular in context awareness development to distribute critical information and provide knowledge services to everyone at anytime and anywhere. However, the data transfer in a WSN potentially encounters many threats and attacks. Hence, particular security schemes are required to prevent them. A WSN usually uses low power, low performance, and limited resources devices. One of the most promising alternatives to public key cryptosystems is Elliptic Curve Cryptography (ECC), due to it pledges smaller keys size. This implies the low cost consumption to calculate arithmetic operations in cryptographic schemes and protocols. Therefore, ECC would be strongly required to be implemented in WSN embedded devices with limited resources (i.e., processor speed, memory, and storage). In this paper, we present an implementation of security system on IEEE802.15.4 WSN device with the employment of Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol. Our experimental results on Intel Mote2 showed that the total time for signature generation is 110 ms, signature verification is 134 ms, and ECDH shared key generation is 69 ms on the setting of 160-bit security level

    Efficient Unified Arithmetic for Hardware Cryptography

    Get PDF
    The basic arithmetic operations (i.e. addition, multiplication, and inversion) in finite fields, GF(q), where q = pk and p is a prime integer, have several applications in cryptography, such as RSA algorithm, Diffie-Hellman key exchange algorithm [1], the US federal Digital Signature Standard [2], elliptic curve cryptography [3, 4], and also recently identity based cryptography [5, 6]. Most popular finite fields that are heavily used in cryptographic applications due to elliptic curve based schemes are prime fields GF(p) and binary extension fields GF(2n). Recently, identity based cryptography based on pairing operations defined over elliptic curve points has stimulated a significant level of interest in the arithmetic of ternary extension fields, GF(3^n)

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    Design a cryptosystem using elliptic curves cryptography and Vigenère symmetry key

    Get PDF
    In this paper describes the basic idea of elliptic curve cryptography (ECC) as well as Vigenère symmetry key. Elliptic curve arithmetic can be used to develop elliptic curve coding schemes, including key exchange, encryption, and digital signature. The main attraction of elliptic curve cryptography compared to Rivest, Shamir, Adleman (RSA) is that it provides equivalent security for a smaller key size, which reduces processing costs. From the theorical basic, we proposed a cryptosystem using elliptic curves and Vigenère cryptography. We proposed and implemented our encryption algorithm in an integrated development environment named visual studio 2019 to design a safe, secure, and effective cryptosystem

    New Blind Muti-signature Schemes based on ECDLP

    Get PDF
    In various types of electronic transactions, including election systems and digital cash schemes, user anonymity and authentication are always required. Blind signatures are considered the most important solutions to meeting these requirements. Many studies have focused on blind signature schemes; however, most of the studied schemes are single blind signature schemes. Although blind multi-signature schemes are available, few studies have focused on these schemes. In this article, blind multi-signature schemes are proposed based on the Elliptic Curve Discrete Logarithm Problem (ECDLP). The proposed schemes are based on the GOST R34.10-2012 digital signature standard and the EC-Schnorr digital signature scheme, and they satisfy blind multi-signature security requirements and have better computational performance than previously proposed schemes. The proposed schemes can be applied in election systems and digital cash schemes

    IMPLEMENTASI ALGORITMA TANDA TANGAN DIGITAL BERBASIS KRIPTOGRAFI KURVA ELIPTIK DIFFIE-HELLMAN

    Get PDF
    In data communication systems, digital signatures are a form of electronic signature security services based on the Elliptic Curve Digital Signature Algorithm (ECDSA) which are considered resistant to certain types of attacks. Attacks on digital signature schemes aim to fake a signature or are called forgery which is said to be successful if the key pair and signature generated by the attacker are accepted by the verifier. Mathematical schemes used to prove the authenticity of messages or digital documents or guarantees that the data and information actually come from the correct source. ECDSA-based digital signatures rely on discrete logarithmic problems as the basis for mathematical calculations. Q = kP where Q and P are the points of the elliptic curve in the finite field  or  and k is a positive integer number. The hash function generated from the algorithm process is then encoded (encrypted) with an asymmetric key cryptographic algorithm. In this work use p = 149 to encrypt plain text by converting the original message using dots on a curve with the help of Python programs. 

    Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 Jacobians with applications to signature schemes

    Get PDF
    We give a general framework for uniform, constant-time one-and two-dimensional scalar multiplication algorithms for elliptic curves and Jacobians of genus 2 curves that operate by projecting to the x-line or Kummer surface, where we can exploit faster and more uniform pseudomultiplication, before recovering the proper "signed" output back on the curve or Jacobian. This extends the work of L{\'o}pez and Dahab, Okeya and Sakurai, and Brier and Joye to genus 2, and also to two-dimensional scalar multiplication. Our results show that many existing fast pseudomultiplication implementations (hitherto limited to applications in Diffie--Hellman key exchange) can be wrapped with simple and efficient pre-and post-computations to yield competitive full scalar multiplication algorithms, ready for use in more general discrete logarithm-based cryptosystems, including signature schemes. This is especially interesting for genus 2, where Kummer surfaces can outperform comparable elliptic curve systems. As an example, we construct an instance of the Schnorr signature scheme driven by Kummer surface arithmetic

    A new digital signature scheme with message recovery using hybrid problems

    Get PDF
    We present a new digital signature scheme with message recovery and its authenticated encryption based on elliptic curve discrete logarithm and quadratic residue. The main idea is to provide a higher level of security than all other techniques that use signatures with single hard problem including factoring, discrete logarithm, residuosity, or elliptic curves. The proposed digital signature schemes do not involve any modular exponentiation operations that leave no gap for attackers. The security analysis demonstrates the improved performance of the proposed schemes in comparison with existing techniques in terms of the ability to resist the most common attack

    Elliptical Curve Digital Signatures Algorithm

    Get PDF
    Elliptical digital signatures algorithm provides security services for resource constrained embedded devices. The ECDSA level security can be enhanced by several parameters as parameter key size and the security level of ECDSA elementary modules such as hash function, elliptic curve point multiplication on koblitz curve which is used to compute public key and a pseudo-random generator which generates key pair generation. This paper describes novel security approach on authentication schemes as a modification of ECDSA scheme. This paper provides a comprehensive survey of recent developments on elliptic curve digital signatures approaches. The survey of ECDSA involves major issues like security of cryptosystem, RFID-tag authentication, Montgomery multiplication over binary fields, Scaling techniques, Signature generation ,signature verification, point addition and point doubling of the different coordinate system and classification. DOI: 10.17762/ijritcc2321-8169.150318
    • …
    corecore