613 research outputs found

    An Optimized Node Level Lightweight Security Algorithm for Cloud Assisted-IoT

    Get PDF
    The fastest-evolving technology, the Internet of Things (IoT), will advance the fields of agriculture, defense, and medical electronics. IoT is focused on giving every object a purpose. IoT with cloud assistance offers a potential remedy for the issue of data expansion for individual objects with restricted capabilities. With the increasing use of cloud technology, the Internet of Things (IoT) has encountered additional security hurdles when it comes to exchanging data between two parties. To address this issue, a thorough investigation was conducted into a secure cloud-assisted strategy for managing IoT data, which ensures the safety of data during its collection, storage, and retrieval via the cloud, while also considering the growing number of users. To achieve this, a lightweight security mechanism that is optimized at the node level is implemented in the proposed system. By utilizing our technology, a secure IoT infrastructure can be established to prevent the majority of data confidentiality threats posed by both insiders and outsiders. Using a heartbeat sensor and a node MCU, we create a heartbeat monitoring system. At the node MCU level, giving security to the patient's health data and preventing unauthorized users from attacking it. Smaller key sizes and lightweight security techniques for IoT devices with minimal power, lower power and memory consumption and Execution time, transmission capacity reserve is used to achieve security. In order to achieve this. The performance of the RSA and ECC algorithms in terms of execution time, power consumption, and memory use have been tabulated for this experimental arrangement. The ECC method occurs to produce the best results in tiny devices

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Blue Door

    Get PDF

    Security technologies for wireless access to local area networks

    Get PDF
    In today’s world, computers and networks are connected to all life aspects and professions. The amount of information, personal and organizational, spread over the network is increasing exponentially. Simultaneously, malicious attacks are being developed at the same speed, which makes having a secure network system a crucial factor on every level and in any organization. Achieving a high protection level has been the goal of many organizations, such as the Wi-Fi Alliance R , and many standards and protocols have been developed over time. This work addresses the historical development of WLAN security technologies, starting from the oldest standard, WEP, and reaching the newly released standard WPA3, passing through the several versions in between,WPA, WPS, WPA2, and EAP. Along with WPA3, this work addresses two newer certificates, Enhanced OpenTM and Easy ConnectTM. Furthermore, a comparative analysis of the previous standards is also presented, detailing their security mechanisms, flaws, attacks, and the measures they have adopted to prevent these attacks. Focusing on the new released WPA3, this work presents a deep study on both WPA3 and EAP-pwd. The development of WPA3 had the objective of providing strong protection, even if the network’s password is considered weak. However, this objective was not fully accomplished and some recent research work discovered design flaws in this new standard. Along with the above studies, this master thesis’ work builds also a network for penetration testing using a set of new devices that support the new standard. A group of possible attacks onWi-Fi latest security standards was implemented on the network, testing the response against each of them, discussing the reason behind the success or the failure of the attack, and providing a set of countermeasures applicable against these attacks. Obtained results show that WPA3 has overcome many of WPA2’s issues, however, it is still unable to overcome some major Wi-Fi vulnerabilities.No mundo de hoje, os computadores e as redes estão conectados praticamente a todos os aspectos da nossa vida pessoal e profissional. A quantidade de informações, pessoais e organizacionais, espalhadas pela rede está a aumentar exponencialmente. Simultaneamente, também os ataques maliciosos estão a aumentar à mesma velocidade, o que faz com que um sistema de rede seguro seja um fator crucial a todos os níveis e em qualquer organização. Alcançar altos níveis de proteção tem sido o objetivo de trabalho de muitas organizações, como a Wi-Fi Alliance R , tendo muitos standards e protocolos sido desenvolvidos ao longo do tempo. Este trabalho aborda o desenvolvimento histórico das tecnologias de segurança para WLANs, começando pelo standard mais antigo, WEP, e acabando no recém-chegado WPA3, passando pelas várias versões intermedias, WPA, WPS, WPA2 e EAP. Juntamente com o WPA3, este trabalho aborda os dois certificados mais recentes, Enhanced OpenTM e Easy ConnectTM. Além disso, também é apresentada uma análise comparativa dos standards anteriores, detalhando os seus principais mecanismos de segurança, falhas, ataques a que são susceptíveis e medidas adotadas para evitar esses ataques. Quanto ao novo WPA3 e EAP-pwd, este trabalho apresenta um estudo aprofundado sobre os seus modos "Personal" e "Enterprise". O desenvolvimento do WPA3 teve por objetivo fornecer proteção forte, mesmo que a password de rede seja considerada fraca. No entanto, esse objetivo não foi totalmente alcançado e alguma investigação realizada recentemente detectou falhas de desenho nesse novo padrão. Juntamente com os estudo dos standards acima referidos, o trabalho realizado para esta tese de mestrado também constrói uma rede para testes de penetração usando um conjunto de novos dispositivos que já suportam o novo standard. São aplicados vários ataques aos mais recentes padrões de segurança Wi-Fi, é testada a sua resposta contra cada um deles, é discutindo o motivo que justifica o sucesso ou a falha do ataque, e são indicadas contramedidas aplicáveis a esses ataques. Os resultados obtidos mostram que o WPA3 superou muitos dos problemas do WPA2 mas que, no entanto, ainda é incapaz de superar algumas das vulnerabilidades presentes nas redes Wi-Fi.First, I would like to express my deepest appreciation to those who gave me the possibility to complete my study and get my Master degree, the Aga Khan Foundation, who has supported me financiall

    Integration of UAVS with Real Time Operating Systems and Establishing a Secure Data Transmission

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In today’s world, the applications of Unmanned Aerial Vehicle (UAV) systems are leaping by extending their scope from military applications on to commercial and medical sectors as well. Owing to this commercialization, the need to append external hardware with UAV systems becomes inevitable. This external hardware could aid in enabling wireless data transfer between the UAV system and remote Wireless Sensor Networks (WSN) using low powered architecture like Thread, BLE (Bluetooth Low Energy). The data is being transmitted from the flight controller to the ground control station using a MAVlink (Micro Air Vehicle Link) protocol. But this radio transmission method is not secure, which may lead to data leakage problems. The ideal aim of this research is to address the issues of integrating different hardware with the flight controller of the UAV system using a light-weight protocol called UAVCAN (Unmanned Aerial Vehicle Controller Area Network). This would result in reduced wiring and would harness the problem of integrating multiple systems to UAV. At the same time, data security is addressed by deploying an encryption chip into the UAV system to encrypt the data transfer using ECC (Elliptic curve cryptography) and transmitting it to cloud platforms instead of radio transmission

    Who Can Find My Devices? Security and Privacy of Apple's Crowd-Sourced Bluetooth Location Tracking System

    Get PDF
    Overnight, Apple has turned its hundreds-of-million-device ecosystem into the world's largest crowd-sourced location tracking network called offline finding (OF). OF leverages online finder devices to detect the presence of missing offline devices using Bluetooth and report an approximate location back to the owner via the Internet. While OF is not the first system of its kind, it is the first to commit to strong privacy goals. In particular, OF aims to ensure finder anonymity, untrackability of owner devices, and confidentiality of location reports. This paper presents the first comprehensive security and privacy analysis of OF. To this end, we recover the specifications of the closed-source OF protocols by means of reverse engineering. We experimentally show that unauthorized access to the location reports allows for accurate device tracking and retrieving a user's top locations with an error in the order of 10 meters in urban areas. While we find that OF's design achieves its privacy goals, we discover two distinct design and implementation flaws that can lead to a location correlation attack and unauthorized access to the location history of the past seven days, which could deanonymize users. Apple has partially addressed the issues following our responsible disclosure. Finally, we make our research artifacts publicly available.Comment: Accepted at Privacy Enhancing Technologies Symposium (PETS) 202

    Sending and Receiving Internet Messages from Disconnected Areas

    Get PDF
    Over 62% of the world is connected to the internet with more than 6.9 billion smartphone users. The omnipresence of technology in the form of the internet and smartphones have led to constant research in improving communication throughout the world. But even today, 37% (2.9 billion people) are not connected to the internet even though most of the people in such areas have smartphones. To solve this problem of access to internet services in disconnected areas, a software-only mobile-first approach has been proposed for disconnected data distribution infrastructure which can support different internet applications in limited connectivity. A prototype application based on Signal Messenger has been created to allow users to send and receive internet messages without the need for internet connectivity. This solution can help bridge the digital divide, improving access to critical communication services in disconnected areas
    corecore