30,179 research outputs found

    Optimal combining of ground-based sensors for the purpose of validating satellite-based rainfall estimates

    Get PDF
    Two problems related to radar rainfall estimation are described. The first part is a description of a preliminary data analysis for the purpose of statistical estimation of rainfall from multiple (radar and raingage) sensors. Raingage, radar, and joint radar-raingage estimation is described, and some results are given. Statistical parameters of rainfall spatial dependence are calculated and discussed in the context of optimal estimation. Quality control of radar data is also described. The second part describes radar scattering by ellipsoidal raindrops. An analytical solution is derived for the Rayleigh scattering regime. Single and volume scattering are presented. Comparison calculations with the known results for spheres and oblate spheroids are shown

    Gaia eclipsing binary and multiple systems. Two-Gaussian models applied to OGLE-III eclipsing binary light curves in the Large Magellanic Cloud

    Full text link
    The advent of large scale multi-epoch surveys raises the need for automated light curve (LC) processing. This is particularly true for eclipsing binaries (EBs), which form one of the most populated types of variable objects. The Gaia mission, launched at the end of 2013, is expected to detect of the order of few million EBs over a 5-year mission. We present an automated procedure to characterize EBs based on the geometric morphology of their LCs with two aims: first to study an ensemble of EBs on a statistical ground without the need to model the binary system, and second to enable the automated identification of EBs that display atypical LCs. We model the folded LC geometry of EBs using up to two Gaussian functions for the eclipses and a cosine function for any ellipsoidal-like variability that may be present between the eclipses. The procedure is applied to the OGLE-III data set of EBs in the Large Magellanic Cloud (LMC) as a proof of concept. The bayesian information criterion is used to select the best model among models containing various combinations of those components, as well as to estimate the significance of the components. Based on the two-Gaussian models, EBs with atypical LC geometries are successfully identified in two diagrams, using the Abbe values of the original and residual folded LCs, and the reduced χ2\chi^2. Cleaning the data set from the atypical cases and further filtering out LCs that contain non-significant eclipse candidates, the ensemble of EBs can be studied on a statistical ground using the two-Gaussian model parameters. For illustration purposes, we present the distribution of projected eccentricities as a function of orbital period for the OGLE-III set of EBs in the LMC, as well as the distribution of their primary versus secondary eclipse widths.Comment: 20 pages, 29 figures. Submitted to A&

    Rotational behavior of red blood cells in suspension---a mesoscale simulation study

    Full text link
    The nature of blood as a suspension of red blood cells makes computational hemodynamics a demanding task. Our coarse-grained blood model, which builds on a lattice Boltzmann method for soft particle suspensions, enables the study of the collective behavior of the order of 10^6 cells in suspension. After demonstrating the viscosity measurement in Kolmogorov flow, we focus on the statistical analysis of the cell orientation and rotation in Couette flow. We quantify the average inclination with respect to the flow and the nematic order as a function of shear rate and hematocrit. We further record the distribution of rotation periods around the vorticity direction and find a pronounced peak in the vicinity of the theoretical value for free model cells even though cell-cell interactions manifest themselves in a substantial width of the distribution.Comment: 8 pages, 5 figure

    The formation of CDM haloes I: Collapse thresholds and the ellipsoidal collapse model

    Full text link
    In the excursion set approach to structure formation initially spherical regions of the linear density field collapse to form haloes of mass MM at redshift zidz_{\rm id} if their linearly extrapolated density contrast, averaged on that scale, exceeds some critical threshold, δc(zid)\delta_{\rm c}(z_{\rm id}). The value of δc(zid)\delta_{\rm c}(z_{\rm id}) is often calculated from the spherical or ellipsoidal collapse model, which provide well-defined predictions given auxiliary properties of the tidal field at a given location. We use two cosmological simulations of structure growth in a Λ\Lambda cold dark matter scenario to quantify δc(zid)\delta_{\rm c}(z_{\rm id}), its dependence on the surrounding tidal field, as well as on the shapes of the Lagrangian regions that collapse to form haloes at zidz_{\rm id}. Our results indicate that the ellipsoidal collapse model provides an accurate description of the mean dependence of δc(zid)\delta_{\rm c}(z_{\rm id}) on both the strength of the tidal field and on halo mass. However, for a given zidz_{\rm id}, δc(zid)\delta_{\rm c}(z_{\rm id}) depends strongly on the halo's characteristic formation redshift: the earlier a halo forms, the higher its initial density contrast. Surprisingly, the majority of haloes forming todaytoday fall below the ellipsoidal collapse barrier, contradicting the model predictions. We trace the origin of this effect to the non-spherical shapes of Lagrangian haloes, which arise naturally due to the asymmetry of the linear tidal field. We show that a modified collapse model, that accounts for the triaxial shape of protohaloes, provides a more accurate description of the measured minimum overdensities of recently collapsed objects.Comment: MNRAS in pres

    Gaia Eclipsing Binary and Multiple Systems. A study of detectability and classification of eclipsing binaries with Gaia

    Full text link
    In the new era of large-scale astronomical surveys, automated methods of analysis and classification of bulk data are a fundamental tool for fast and efficient production of deliverables. This becomes ever more imminent as we enter the Gaia era. We investigate the potential detectability of eclipsing binaries with Gaia using a data set of all Kepler eclipsing binaries sampled with Gaia cadence and folded with the Kepler period. The performance of fitting methods is evaluated with comparison to real Kepler data parameters and a classification scheme is proposed for the potentially detectable sources based on the geometry of the light curve fits. The polynomial chain (polyfit) and two-Gaussian models are used for light curve fitting of the data set. Classification is performed with a combination of the t-SNE (t-distrubuted Stochastic Neighbor Embedding) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms. We find that approximately 68% of Kepler Eclipsing Binary sources are potentially detectable by Gaia when folded with the Kepler period and propose a classification scheme of the detectable sources based on the morphological type indicative of the light curve, with subclasses that reflect the properties of the fitted model (presence and visibility of eclipses, their width, depth, etc.).Comment: 9 pages, 18 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore