47,932 research outputs found

    Hyperaccurate Ellipse Fitting without Iterations

    Get PDF
    This paper presents a new method for fitting an ellipse to a point sequence extracted from images. It is widely known that the best fit is obtained by maximum likelihood. However, it requires iterations, which may not converge in the presence of large noise. Our approach is algebraic distance minimization; no iterations are required. Exploiting the fact that the solution depends on the way the scale is normalized, we analyze the accuracy to high order error terms with the scale normalization weight unspecified and determine it so that the bias is zero up to the second order. We demonstrate by experiments that our method is superior to the Taubin method, also algebraic and known to be highly accurate

    Direct Least-Squares Ellipse Fitting

    Get PDF
    Many biological and astronomical forms can be best represented by ellipses. While some more complex curves might represent the shape more accurately, ellipses have the advantage that they are easily parameterised and define the location, orientation and dimensions of the data more clearly. In this paper, we present a method of direct least-squares ellipse fitting by solving a generalised eigensystem. This is more efficient and more accurate than many alternative approaches to the ellipse-fitting problem such as fuzzy c-shells clustering and Hough transforms. This method was developed for human body modelling as part of a larger project to design a marker-free gait analysis system which is being undertaken at the National Rehabilitation Hospital, Dublin

    New Confocal Hyperbola-based Ellipse Fitting with Applications to Estimating Parameters of Mechanical Pipes from Point Clouds

    Get PDF
    This manuscript presents a new method for fitting ellipses to two-dimensional data using the confocal hyperbola approximation to the geometric distance of points to ellipses. The proposed method was evaluated and compared to established methods on simulated and real-world datasets. First, it was revealed that the confocal hyperbola distance considerably outperforms other distance approximations such as algebraic and Sampson. Next, the proposed ellipse fitting method was compared with five reliable and established methods proposed by Halir, Taubin, Kanatani, Ahn and Szpak. The performance of each method as a function of rotation, aspect ratio, noise, and arc-length were examined. It was observed that the proposed ellipse fitting method achieved almost identical results (and in some cases better) than the gold standard geometric method of Ahn and outperformed the remaining methods in all simulation experiments. Finally, the proposed method outperformed the considered ellipse fitting methods in estimating the geometric parameters of cylindrical mechanical pipes from point clouds. The results of the experiments show that the confocal hyperbola is an excellent approximation to the true geometric distance and produces reliable and accurate ellipse fitting in practical settings
    • …
    corecore