1,449 research outputs found

    Quantization-free parameter space reduction in ellipse detection

    Get PDF
    Ellipse modeling and detection is an important task in many computer vision and pattern recognition applications. In this thesis, four Hough-based transform algorithms have been carefully selected, studied and analyzed. These techniques include the Standard Hough Transform, Probabilistic Hough Transform, Randomized Hough Transform and Directional Information for Parameter Space Decomposition. The four algorithms are analyzed and compared against each other in this study using synthetic ellipses. Objects such as noise have been introduced to distract ellipse detection in some of the synthetic ellipse images. To complete the analysis, real world images were used to test each algorithm resulting in the proposal of a new algorithm. The proposed algorithm uses the strengths from each of the analyzed algorithms. This new algorithm uses the same approach as the Directional Information for Parameter Space Decomposition to determine the ellipse center. However, in the process of collecting votes for the ellipse center, pairs of unique edge points voted for the center are also kept in an array. A minimum of two pairs of edge points are required to determine the ellipse. This significantly reduces the usual five dimensional array requirement needed in the Standard Hough Transform. We present results of the experiments with synthetic images demonstrating that the proposed method is more effective and robust to noise. Real world applications on complex real world images are also performed successfully in the experiment

    Pupil Center Detection Approaches: A comparative analysis

    Full text link
    In the last decade, the development of technologies and tools for eye tracking has been a constantly growing area. Detecting the center of the pupil, using image processing techniques, has been an essential step in this process. A large number of techniques have been proposed for pupil center detection using both traditional image processing and machine learning-based methods. Despite the large number of methods proposed, no comparative work on their performance was found, using the same images and performance metrics. In this work, we aim at comparing four of the most frequently cited traditional methods for pupil center detection in terms of accuracy, robustness, and computational cost. These methods are based on the circular Hough transform, ellipse fitting, Daugman's integro-differential operator and radial symmetry transform. The comparative analysis was performed with 800 infrared images from the CASIA-IrisV3 and CASIA-IrisV4 databases containing various types of disturbances. The best performance was obtained by the method based on the radial symmetry transform with an accuracy and average robustness higher than 94%. The shortest processing time, obtained with the ellipse fitting method, was 0.06 s.Comment: 15 pages, 9 figures, submitted to the journal "Computaci\'on y Sistemas

    Eye Corner Detection

    Get PDF
    Detection of corners of the eye is a good research topic. It plays an important role in multiple tasks performed in the field of Computer Vision. It also plays a key role in biometric systems. In this the- sis, initially, the existing corner detection methods are discussed. Using Hough transform line, circle and ellipse were found out in the given image. The proposed work includes, finding the eye region in the given face image using Template Matching method. Later on, we fit a rectangle to the matched eye region. And then, we find out the corners of the rectangle and approximate them to be the corners of the eye

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201
    corecore