458 research outputs found

    Elimination of spatial connectives in static spatial logics

    Get PDF
    AbstractThe recent interest for specification on resources yields so-called spatial logics, that is specification languages offering new forms of reasoning: the local reasoning through the separation of the resource space into two disjoint subspaces, and the contextual reasoning through hypothetical extension of the resource space.We consider two resource models and their related logics:•The static ambient model, proposed as an abstraction of semistructured data (Proc. ESOP’01, Lecture Notes in Computer Science, vol. 2028, Springer, Berlin, 2001, pp. 1–22 (invited paper)) with the static ambient logic (SAL) that was proposed as a request language, both obtained by restricting the mobile ambient calculus (Proc. FOSSACS’98, Lecture Notes in Computer Science, vol. 1378, Springer, Berlin, 1998, pp. 140–155) and logic (Proc. POPL’00, ACM Press, New York, 2000, pp. 365–377) to their purely static aspects.•The memory model and the assertion language of separation logic, both defined in Reynolds (Proc. LICS’02, 2002) for the purpose of the axiomatic semantic of imperative programs manipulating pointers.We raise the questions of the expressiveness and the minimality of these logics. Our main contribution is a minimalisation technique we may apply for these two logics. We moreover show some restrictions of this technique for the extension SAL∀ with universal quantification, and we establish the minimality of the adjunct-free fragment (SALint)

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    Matching Logic

    Full text link
    This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning about structure by means of patterns and pattern matching. Its sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers, but no difference is made between function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set of values that match it), in contrast to FOL where functions and predicates map into a regular domain. Matching logic uniformly generalizes several logical frameworks important for program analysis, such as: propositional logic, algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can specify separation requirements at any level in any program configuration, not only in the heaps or stores, without any special logical constructs for that: the very nature of pattern matching is that if two structures are matched as part of a pattern, then they can only be spatially separated. Like FOL, matching logic can also be translated into pure predicate logic with equality, at the same time admitting its own sound and complete proof system. A practical aspect of matching logic is that FOL reasoning with equality remains sound, so off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning about programs in programming languages that have an operational semantics, but it is not limited to this

    Computational Logic for Biomedicine and Neurosciences

    Get PDF
    We advocate here the use of computational logic for systems biology, as a \emph{unified and safe} framework well suited for both modeling the dynamic behaviour of biological systems, expressing properties of them, and verifying these properties. The potential candidate logics should have a traditional proof theoretic pedigree (including either induction, or a sequent calculus presentation enjoying cut-elimination and focusing), and should come with certified proof tools. Beyond providing a reliable framework, this allows the correct encodings of our biological systems. % For systems biology in general and biomedicine in particular, we have so far, for the modeling part, three candidate logics: all based on linear logic. The studied properties and their proofs are formalized in a very expressive (non linear) inductive logic: the Calculus of Inductive Constructions (CIC). The examples we have considered so far are relatively simple ones; however, all coming with formal semi-automatic proofs in the Coq system, which implements CIC. In neuroscience, we are directly using CIC and Coq, to model neurons and some simple neuronal circuits and prove some of their dynamic properties. % In biomedicine, the study of multi omic pathway interactions, together with clinical and electronic health record data should help in drug discovery and disease diagnosis. Future work includes using more automatic provers. This should enable us to specify and study more realistic examples, and in the long term to provide a system for disease diagnosis and therapy prognosis

    Extending Propositional Separation Logic for Robustness Properties

    Get PDF
    We study an extension of propositional separation logic that can specify robustness properties, such as acyclicity and garbage freedom, for automatic verification of stateful programs with singly-linked lists. We show that its satisfiability problem is PSpace-complete, whereas modest extensions of the logic are shown to be Tower-hard. As separating implication, reachability predicates (under some syntactical restrictions) and a unique quantified variable are allowed, this logic subsumes several PSpace-complete separation logics considered in previous works
    • …
    corecore