9,023 research outputs found

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria

    TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones

    Get PDF
    The exceptional rise in usages of mobile devices such as smartphones and tablets has contributed to a massive increase in wireless network trac both Cellular (3G/4G/LTE) and WiFi. The unprecedented growth in wireless network trac not only strain the battery of the mobile devices but also bogs down the last-hop wireless access links. Interestingly, a signicant part of this data trac exhibits high level of redundancy in them due to repeated access of popular contents in the web. Hence, a good amount of research both in academia and in industries has studied, analyzed and designed diverse systems that attempt to eliminate redundancy in the network trac. Several of the existing Trac Redundancy Elimination (TRE) solutions either does not improve last-hop wireless access links or involves inecient use of compute resources from resource-constrained mobile devices. In this research, we propose TailoredRE, a personalized cloud-based trac redundancy elimination system. The main objective of TailoredRE is to tailor TRE mechanism such that TRE is performed against selected applications rather than application agnostically, thus improving eciency by avoiding caching of unnecessary data chunks. In our system, we leverage the rich resources of the cloud to conduct TRE by ooading most of the operational cost from the smartphones or mobile devices to its clones (proxies) available in the cloud. We cluster the multiple individual user clones in the cloud based on the factors of connectedness among users such as usage of similar applications, common interests in specic web contents etc., to improve the eciency of caching in the cloud. This thesis encompasses motivation, system design along with detailed analysis of the results obtained through simulation and real implementation of TailoredRE system

    Rendering Elimination: Early Discard of Redundant Tiles in the Graphics Pipeline

    Full text link
    GPUs are one of the most energy-consuming components for real-time rendering applications, since a large number of fragment shading computations and memory accesses are involved. Main memory bandwidth is especially taxing battery-operated devices such as smartphones. Tile-Based Rendering GPUs divide the screen space into multiple tiles that are independently rendered in on-chip buffers, thus reducing memory bandwidth and energy consumption. We have observed that, in many animated graphics workloads, a large number of screen tiles have the same color across adjacent frames. In this paper, we propose Rendering Elimination (RE), a novel micro-architectural technique that accurately determines if a tile will be identical to the same tile in the preceding frame before rasterization by means of comparing signatures. Since RE identifies redundant tiles early in the graphics pipeline, it completely avoids the computation and memory accesses of the most power consuming stages of the pipeline, which substantially reduces the execution time and the energy consumption of the GPU. For widely used Android applications, we show that RE achieves an average speedup of 1.74x and energy reduction of 43% for the GPU/Memory system, surpassing by far the benefits of Transaction Elimination, a state-of-the-art memory bandwidth reduction technique available in some commercial Tile-Based Rendering GPUs

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    Data-Link and Surface Map Traffic Intent Displays for NextGen 4DT and Equivalent Visual Surface Operations

    Get PDF
    By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a consortium of industry, academia and government agencies have proposed a revolutionary new concept for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the concept of "net-centric" operations whereby each aircraft and air services provider shares information to allow real-time adaptability to ever-changing factors such as weather, traffic, flight trajectories, and security. Data-link is likely to be the primary source of communication in NextGen. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen

    Prospect Theory and Choice Behaviour Strategies: Review and Synthesis of Concepts from Social and Transport sciences

    Get PDF
    Utility Theory is commonly considered as the most useful descriptive theory of human choice behaviour. Alternative concepts are only incidentally considered. This paper reviews alternative assumptions and empirical findings about human choice behaviour. To facilitate comparison and synthesis the review starts with the proposal of a generic framework of choice behaviour. The micro-economic assumptions of Utility Theory and Prospect Theory are then mapped onto this framework. These are compared with each other and other assumptions against the background of theoretical and empirical findings from behavioural economics, several other social disciplines and transport sciences. An extension of Prospect Theory with assumptions about the valuation of attributes and the employment of different decision rules yields a functional concept of choice behaviour that is able to describe most of the reviewed empirical findings to a larger extent than Utility Theory

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed
    corecore