43 research outputs found

    Syntactic analysis of LR(k) languages

    Get PDF
    PhD ThesisA method of syntactic analysis, termed LA(m)LR(k), is discussed theoretically. Knuth's LR(k) algorithm is included as the special case m = k. A simpler variant, SLA(m)LR(k) is also described, which in the case SLA(k)LR(O) is equivalent to the SLR(k) algorithm as defined by DeRemer. Both variants have the LR(k) property of immediate detection of syntactic errors. The case m = 1 k = 0 is examined in detail, when the methods provide a practical parsing technique of greater generality than precedence methods in current use. A formal comparison is made with the weak precedence algorithm. The implementation of an SLA(1)LR(O) parser (SLR) is described, involving numerous space and time optimisations. Of importance is a technique for bypassing unnecessary steps in a syntactic derivation. Direct comparisons are made, primarily with the simple precedence parser of the highly efficient Stanford AlgolW compiler, and confirm the practical feasibility of the SLR parser.The Science Research Council

    Development of an LALR(1) parser generator

    Get PDF

    Efficient Semiring-Weighted Earley Parsing

    Full text link
    This paper provides a reference description, in the form of a deduction system, of Earley's (1970) context-free parsing algorithm with various speed-ups. Our presentation includes a known worst-case runtime improvement from Earley's O(N3GR)O (N^3|G||R|), which is unworkable for the large grammars that arise in natural language processing, to O(N3G)O (N^3|G|), which matches the runtime of CKY on a binarized version of the grammar GG. Here NN is the length of the sentence, R|R| is the number of productions in GG, and G|G| is the total length of those productions. We also provide a version that achieves runtime of O(N3M)O (N^3|M|) with MG|M| \leq |G| when the grammar is represented compactly as a single finite-state automaton MM (this is partly novel). We carefully treat the generalization to semiring-weighted deduction, preprocessing the grammar like Stolcke (1995) to eliminate deduction cycles, and further generalize Stolcke's method to compute the weights of sentence prefixes. We also provide implementation details for efficient execution, ensuring that on a preprocessed grammar, the semiring-weighted versions of our methods have the same asymptotic runtime and space requirements as the unweighted methods, including sub-cubic runtime on some grammars.Comment: Main conference long paper at ACL 202

    Improving modularity in GLL

    Get PDF

    Analysis-oriented two-level grammars

    Get PDF
    Summary: p. 2-3

    音声翻訳における文解析技法について

    Get PDF
    本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・論文博士博士(工学)乙第8652号論工博第2893号新制||工||968(附属図書館)UT51-94-R411(主査)教授 長尾 真, 教授 堂下 修司, 教授 池田 克夫学位規則第4条第2項該当Doctor of EngineeringKyoto UniversityDFA

    Parsing Schemata

    Get PDF
    Parsing schemata provide a general framework for specication, analysis and comparison of (sequential and/or parallel) parsing algorithms. A grammar specifies implicitly what the valid parses of a sentence are; a parsing algorithm specifies explicitly how to compute these. Parsing schemata form a well-defined level of abstraction in between grammars and parsing algorithms. A parsing schema specifies the types of intermediate results that can be computed by a parser, and the rules that allow to expand a given set of such results with new results. A parsing schema does not specify the data structures, control structures, and (in case of parallel processing)\ud communication structures that are to be used by a parser.\ud Part I, Exposition, gives a general introduction to the ideas that are worked out in the following parts.\ud Part II, Foundation, unfolds a mathematical theory of parsing schemata. Different kinds of relations between parsing schemata are formally introduced and illustrated with examples drawn from the parsing literature.\ud Part III, Application, discusses a series of applications of parsing schemata.\ud - Feature percolation in unification grammar parsing can be described in an elegant, legible notation.\ud - Because of the absence of algorithmic detail, parsing schemata can be used to get a formal grip on highly complicated algorithms. We give substance to this claim by means of a thorough analysis of Left-Corner and Head-Corner chart parsing.\ud - As an example of structural similarity of parsers, despite differences in form and appearance, we show that the underlying parsing schemata of Earley's algorithm and Tomita's algorithm are virtually identical. Using this structural correspondence we can obtain a novel parallel parser by cross-fertilizing a parallel Earley parser with Tomita's graph-structured stack.\ud - Parsing schemata can be implemented straightforwardly by boolean circuits. This means that, in principle, parsing schemata can be coded directly into hardware.\ud Part IV, Perspective, discusses the prospects for natural language parsing applications and draws some conclusions. An important observation is that the theoretical and practical part of the book reinforce each other. The proposed framework is abstract enough to allow a thorough mathematical treatment and practical enough to allow rewriting a variety of real parsing algorithms (i.e. seriously proposed in the literature, not toy examples)\ud in a clear and coherent way

    LR(k) sparse-parsers and their optimisation

    Get PDF
    PhD ThesisA method of syntactic analysis is developed which . . is believed to surpass all known competitors in all major respects. I The method is based upon that associated with the LR(k) grammars but is faster because it bypasses all reduction steps concerned with 'chain' productions. These are freely selected productions which are considered semantically irrelevant and whose right parts consist of just a single symbol. The parses produced by the method are 'sparse' in that they contain no references to chain productions - they are termed 'chain-free' parses. The CFLR(k) grammars are introduced as the largest class which can be -Chain-F-ree parsed from -Le-ft to Right while looking ~ symbols ahead of the current point of the parse. The properties of these grammars are examined in detail and their relationship to the conventional LR(k) grammars is explored. Techniques are presented for testing grammars for the CFLR(k) property and for constructing chain-free parsers for those grammars possessing the property. Methods are also presented for. converting ordinary LR(k) parsers into chain-free parsers. CFLR(k) parsers are more widely applicable than their LR(k) counterparts, are faster 'and provide the same excellent detection of syntactic errors. Unfortunately they also tend to be rather larger. A 'simple optimization is presented which completely'overcomes this single disadvantage without sacrificing any of the advantages of the method. These theoretical techniques are adapted to provide truly practical chain-free parsers based on the conventional SLR and,LALR parsing methods. Detailed consideration is given to use of 'default reductions' and related techniques for achd.evfng compact representations of these parsers. The resulting chain-free parsers are not only faster than their ordinary counterparts, but probably smaller too. We believe their advantages are such that they should substantially replace other parsing methods currently used in programming language compilers

    A grammar based approach towards the automatic implementation of data communication protocols in hardware

    Get PDF
    corecore