513 research outputs found

    The model theory of Commutative Near Vector Spaces

    Full text link
    In this paper we study near vector spaces over a commutative FF from a model theoretic point of view. In this context we show regular near vector spaces are in fact vector spaces. We find that near vector spaces are not first order axiomatisable, but that finite block near vector spaces are. In the latter case we establish quantifier elimination, and that the theory is controlled by which elements of the pointwise additive closure of FF are automorphisms of the near vector space

    Generalizations of Kochen and Specker's Theorem and the Effectiveness of Gleason's Theorem

    Get PDF
    Kochen and Specker's theorem can be seen as a consequence of Gleason's theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason's theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated.Comment: 14 pages, 6 figures, read at the Robert Clifton memorial conferenc

    Pseudofinite structures and simplicity

    Get PDF
    We explore a notion of pseudofinite dimension, introduced by Hrushovski and Wagner, on an infinite ultraproduct of finite structures. Certain conditions on pseudofinite dimension are identified that guarantee simplicity or supersimplicity of the underlying theory, and that a drop in pseudofinite dimension is equivalent to forking. Under a suitable assumption, a measure-theoretic condition is shown to be equivalent to local stability. Many examples are explored, including vector spaces over finite fields viewed as 2-sorted finite structures, and homocyclic groups. Connections are made to products of sets in finite groups, in particular to word maps, and a generalization of Tao's algebraic regularity lemma is noted
    • ā€¦
    corecore