238 research outputs found

    Compiler and Runtime Optimizations for Fine-Grained Distributed Shared Memory Systems

    Get PDF
    Bal, H.E. [Promotor

    Hybrid eager and lazy evaluation for efficient compilation of Haskell

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 208-220).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.The advantage of a non-strict, purely functional language such as Haskell lies in its clean equational semantics. However, lazy implementations of Haskell fall short: they cannot express tail recursion gracefully without annotation. We describe resource-bounded hybrid evaluation, a mixture of strict and lazy evaluation, and its realization in Eager Haskell. From the programmer's perspective, Eager Haskell is simply another implementation of Haskell with the same clean equational semantics. Iteration can be expressed using tail recursion, without the need to resort to program annotations. Under hybrid evaluation, computations are ordinarily executed in program order just as in a strict functional language. When particular stack, heap, or time bounds are exceeded, suspensions are generated for all outstanding computations. These suspensions are re-started in a demand-driven fashion from the root. The Eager Haskell compiler translates Ac, the compiler's intermediate representation, to efficient C code. We use an equational semantics for Ac to develop simple correctness proofs for program transformations, and connect actions in the run-time system to steps in the hybrid evaluation strategy.(cont.) The focus of compilation is efficiency in the common case of straight-line execution; the handling of non-strictness and suspension are left to the run-time system. Several additional contributions have resulted from the implementation of hybrid evaluation. Eager Haskell is the first eager compiler to use a call stack. Our generational garbage collector uses this stack as an additional predictor of object lifetime. Objects above a stack watermark are assumed to be likely to die; we avoid promoting them. Those below are likely to remain untouched and therefore are good candidates for promotion. To avoid eagerly evaluating error checks, they are compiled into special bottom thunks, which are treated specially by the run-time system. The compiler identifies error handling code using a mixture of strictness and type information. This information is also used to avoid inlining error handlers, and to enable aggressive program transformation in the presence of error handling.by Jan-Willem Maessen.Ph.D

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    Types and Intermediate Representations

    Get PDF
    The design objectives and the mechanisms for achieving those objectives are considered for each of three systems, Java, Erlang, and TIL. In particular, I examine the use of types and intermediate representations in the system implementation. In addition, the systems are compared to examine how one system\u27s mechanisms may (or may not) be applied to another

    Vertically integrated analysis and transformation for embedded software

    Get PDF
    Journal ArticleProgram analyses and transformations that are more aggressive and more domain-specific than those traditionally performed by compilers are one possible route to achieving the rapid creation of reliable and efficient embedded software. We are creating a new framework for Vertically Integrated Program Analysis (VIPA) that makes use of information gathered at multiple levels of abstraction such as high-level models, source code, and assembly language. This paper describes our approach and shows how and why it will help create better embedded software

    Disjunctive invariants for modular static analysis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Safety-Critical Java for Embedded Systems

    Get PDF

    Development of a static analysis tool to find securty vulnerabilities in java applications

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 57-60)Text in English Abstract: Turkish and Englishix, 77 leavesThe scope of this thesis is to enhance a static analysis tool in order to find security limitations in java applications. This will contribute to the removal of some of the existing limitations related with the lack of java source codes. The generally used tools for a static analysis are FindBugs, Jlint, PMD, ESC/Java2, Checkstyle. In this study, it is aimed to utilize PMD static analysis tool which already has been developed to find defects Possible bugs (empty try/catch/finally/switch statements), Dead code (unused local variables, parameters and private methods), Suboptimal code (wasteful String/StringBuffer usage), Overcomplicated expressions (unnecessary if statements for loops that could be while loops), Duplicate code (copied/pasted code means copied/pasted bugs). On the other hand, faults possible unexpected exception, length may be less than zero, division by zero, stream not closed on all paths and should be a static inner class cases were not implemented by PMD static analysis tool. PMD performs syntactic checks and dataflow analysis on program source code.In addition to some detection of clearly erroneous code, many of the .bugs. PMD looks for are stylistic conventions whose violation might be suspicious under some circumstances. For example, having a try statement with an empty catch block might indicate that the caught error is incorrectly discarded. Because PMD includes many detectors for bugs that depend on programming style, PMD includes support for selecting which detectors or groups of detectors should be run. While PMD.s main structure was conserved, boundary overflow vulnerability rules have been implemented to PMD
    corecore