1,128 research outputs found

    DINOMO: An Elastic, Scalable, High-Performance Key-Value Store for Disaggregated Persistent Memory (Extended Version)

    Full text link
    We present Dinomo, a novel key-value store for disaggregated persistent memory (DPM). Dinomo is the first key-value store for DPM that simultaneously achieves high common-case performance, scalability, and lightweight online reconfiguration. We observe that previously proposed key-value stores for DPM had architectural limitations that prevent them from achieving all three goals simultaneously. Dinomo uses a novel combination of techniques such as ownership partitioning, disaggregated adaptive caching, selective replication, and lock-free and log-free indexing to achieve these goals. Compared to a state-of-the-art DPM key-value store, Dinomo achieves at least 3.8x better throughput on various workloads at scale and higher scalability, while providing fast reconfiguration.Comment: This is an extended version of the full paper to appear in PVLDB 15.13 (VLDB 2023

    Uintah parallelism infrastructure: a performance evaluation on the SGI origin 2000

    Get PDF
    ManuscriptUintah is a component-based visual problem solving environment (PSE) designed to specifically address the unique problems inherent in running massively parallel scientific computations on terascale computing platforms. In particular, development of the Uintah system is part of the C-SAFE [2] effort to study the interactions between hydrocarbon fires, structures and high-energy materials (explosives and propellants). In this paper we describe methods for generating meaningful performance measurements for the Uintah PSE runing on the SGI Origin 2000 multiprocessor architecture (these methods are applicable to many other applications.) These techniques include utilizing the non-intrusive performance counters built into the R10k and R12k processors, controlling process placement, controlling memory layout, and utilization of a task graph approach to specifying and solving the problem
    • …
    corecore