713 research outputs found

    Performance Analysis of Loss Multilevel Quantization on the Secret Key Generation Scheme in Indoor Wireless Environment

    Get PDF
    The necessity for secured communication devices that has limited computing power has encouraged the development of key generation scheme. The generation of a symmetric key scheme that utilizes randomness of wireless channels offers a most promising solution as a result of the easy distribution of secret key mechanisms. In the last few years, various schemes have been proposed, but there are trade-offs between the performance parameters used. The expected parameters are the low Key Disagreement Rate (KDR), the high Key Generation Rate (KGR), and the fulfillment of standard of randomness. In this paper, we propose the use of a combination of pre-processing methods with multilevel lossy quantization to overcome the trade-off of performance parameters of the Secret Key Generation (SKG) scheme. Pre-process method used to improve reciprocity so as to reduce KDR, whereas multilevel quantization is used to improve the KGR. We use Kalman as the pre-processing method and Adaptive Quantization, Modified Multi-Bit (MMB), and 2-ary Quantization as the multilevel lossy quantization. Testing is conducted by comparing the performance between direct quantization with the addition of the pre-processing method in various multilevel lossy quantization schemes. The test results show that the use of Kalman as pre-processing methods and multilevel lossy quantization can overcome the trade-off performance parameters by reducing KDR and increasing KGR, with the best performance, was obtained when we use adaptive quantization. The resulting secret key has also fulfilled 6 random tests with p values greater than 0.01

    Doctor of Philosophy

    Get PDF
    dissertationCross layer system design represents a paradigm shift that breaks the traditional layer-boundaries in a network stack to enhance a wireless network in a number of di erent ways. Existing work has used the cross layer approach to optimize a wireless network in terms of packet scheduling, error correction, multimedia quality, power consumption, selection of modulation/coding and user experience, etc. We explore the use of new cross layer opportunities to achieve secrecy and e ciency of data transmission in wireless networks. In the rst part of this dissertation, we build secret key establishment methods for private communication between wireless devices using the spatio-temporal variations of symmetric-wireless channel measurements. We evaluate our methods on a variety of wireless devices, including laptops, telosB sensor nodes, and Android smartphones, with diverse wireless capabilities. We perform extensive measurements in real-world environments and show that our methods generate high entropy secret bits at a signi cantly faster rate in comparison to existing approaches. While the rst part of this dissertation focuses on achieving secrecy in wireless networks, the second part of this dissertation examines the use of special pulse shaping lters of the lterbank multicarrier (FBMC) physical layer in reliably transmitting data packets at a very high rate. We rst analyze the mutual interference power across subcarriers used by di erent transmitters. Next, to understand the impact of FBMC beyond the physical layer, we devise a distributed and adaptive medium access control protocol that coordinates data packet tra c among the di erent nodes in the network in a best e ort manner. Using extensive simulations, we show that FBMC consistently achieves an order-of-magnitude performance improvement over orthogonal frequency division multiplexing (OFDM) in several aspects, including packet transmission delays, channel access delays, and e ective data transmission rate available to each node in static indoor settings as well as in vehicular networks

    Authenticated secret key generation in delay-constrained wireless systems

    Get PDF
    With the emergence of 5G low-latency applications, such as haptics and V2X, low-complexity and low-latency security mechanisms are needed. Promising lightweight mechanisms include physical unclonable functions (PUF) and secret key generation (SKG) at the physical layer, as considered in this paper. In this framework, we propose (i) a zero round trip time (0-RTT) resumption authentication protocol combining PUF and SKG processes, (ii) a novel authenticated encryption (AE) using SKG, and (iii) pipelining of the AE SKG and the encrypted data transfer in order to reduce latency. Implementing the pipelining at PHY, we investigate a parallel SKG approach for multi-carrier systems, where a subset of the subcarriers are used for SKG and the rest for data transmission. The optimal solution to this PHY resource allocation problem is identified under security, power, and delay constraints, by formulating the subcarrier scheduling as a subset-sum 0βˆ’1 knapsack optimization. A heuristic algorithm of linear complexity is proposed and shown to incur negligible loss with respect to the optimal dynamic programming solution. All of the proposed mechanisms have the potential to pave the way for a new breed of latency aware security protocols

    Secure key design approaches using entropy harvesting in wireless sensor network: A survey

    Get PDF
    Physical layer based security design in wireless sensor networks have gained much importance since the past decade. The various constraints associated with such networks coupled with other factors such as their deployment mainly in remote areas, nature of communication etc. are responsible for development of research works where the focus is secured key generation, extraction, and sharing. Keeping the importance of such works in mind, this survey is undertaken that provides a vivid description of the different mechanisms adopted for securely generating the key as well its randomness extraction and also sharing. This survey work not only concentrates on the more common methods, like received signal strength based but also goes on to describe other uncommon strategies such as accelerometer based. We first discuss the three fundamental steps viz. randomness extraction, key generation and sharing and their importance in physical layer based security design. We then review existing secure key generation, extraction, and sharing mechanisms and also discuss their pros and cons. In addition, we present a comprehensive comparative study of the recent advancements in secure key generation, sharing, and randomness extraction approaches on the basis of adversary, secret bit generation rate, energy efficiency etc. Finally, the survey wraps up with some promising future research directions in this area

    Performance Improvement of Secret Key Generation Scheme in Wireless Indoor Environment

    Get PDF
    The Secret Key Generation (SKG) scheme that exploits the reciprocity and uniqueness of wireless channel between two users plays a significant part in a new increasing distributed security system. The scheme performance can be distinguished based on the low value of Key disagreement Rate (KDR), the high value of Key Generation Rate (KGR), as well as the fulfillment of the NIST randomness standard. The previous SKG scheme has a high KDR due to a direct quantization of a measurement result of the Received Signal Strength (RSS). To overcome the above issue, we conduct a pre-processing of measurement result before quantization with the Kalman method. The pre-process is carried out to improve the channel reciprocity between two legitimate users with the objective to reduce the bit mismatch. Through an experiment, we propose a new quantization scheme called a Modified Multi-Bit (MMB) that uses a multi-bit system on every level of quantization. The test results show that the proposed combination of preprocessing and the MMB scheme has a better performance compared to the existing schemes in terms of KDR and KGR. The Secret Key generated by our scheme also fulfills the NIST randomness standard

    "Security at the Physical and MAC Layers in Wireless Networks"

    Get PDF
    • …
    corecore