973 research outputs found

    Making non-volatile memory programmable

    Get PDF
    Byte-addressable, non-volatile memory (NVM) is emerging as a revolutionary memory technology that provides persistence, near-DRAM performance, and scalable capacity. By using NVM, applications can directly create and manipulate durable data in place without the need for serialization out to SSDs. Ideally, through NVM, persistent applications will be able to maintain crash-consistency at a minimal cost. However, before this is possible, improvements must be made at both the hardware and software level to support persistent applications. Currently, software support for NVM places too high of a burden on the developer, introducing many opportunities for mistakes while also being too rigid for compiler optimizations. Likewise, at the hardware level, too little information is passed to the processor about the instruction-level ordering requirements of persistent applications; this forces the hardware to require the use of coarse fences, which significantly slow down execution. To help realize the promise of NVM, this thesis proposes both new software and hardware support that make NVM programmable. From the software side, this thesis proposes a new NVM programming model which relieves the programmer from performing much of the accounting work in persistent applications, instead relying on the runtime to perform error-prone tasks. Specifically, within the proposed model, the user only needs to provide minimal markings to identify the persistent data set and to ensure data is updated in a crash-consistent manner. Given this new NVM programming model, this thesis next presents an implementation of the model in Java. I call my implementation AutoPersist and build my support into the Maxine research Java Virtual Machine (JVM). In this thesis I describe how the JVM can be changed to support the proposed NVM programming model, including adding new Java libraries, adding new JVM runtime features, and augmenting the behavior of existing Java bytecodes. In addition to being easy-to-use, another advantage of the proposed model is that it is amenable to compiler optimizations. In this thesis I highlight two profile-guided optimizations: eagerly allocating objects directly into NVM and speculatively pruning control flow to only include expected-to-be taken paths. I also describe how to apply these optimizations to AutoPersist and show they have a substantial performance impact. While designing AutoPersist, I often observed that dependency information known by the compiler cannot be passed down to the underlying hardware; instead, the compiler must insert coarse-grain fences to enforce needed dependencies. This is because current instruction set architectures (ISA) cannot describe arbitrary instruction-level execution ordering constraints. To fix this limitation, I introduce the Execution Dependency Extension (EDE), and describe how EDE can be added to an existing ISA as well as be implemented in current processor pipelines. Overall, emerging NVM technologies can deliver programmer-friendly high performance. However, for this to happen, both software and hardware improvements are necessary. This thesis takes steps to address current the software and hardware gaps: I propose new software support to assist in the development of persistent applications and also introduce new instructions which allow for arbitrary instruction-level dependencies to be conveyed and enforced by the underlying hardware. With these improvements, hopefully the dream of programmable high-performance NVM is one step closer to being realized

    Architectural Principles for Database Systems on Storage-Class Memory

    Get PDF
    Database systems have long been optimized to hide the higher latency of storage media, yielding complex persistence mechanisms. With the advent of large DRAM capacities, it became possible to keep a full copy of the data in DRAM. Systems that leverage this possibility, such as main-memory databases, keep two copies of the data in two different formats: one in main memory and the other one in storage. The two copies are kept synchronized using snapshotting and logging. This main-memory-centric architecture yields nearly two orders of magnitude faster analytical processing than traditional, disk-centric ones. The rise of Big Data emphasized the importance of such systems with an ever-increasing need for more main memory. However, DRAM is hitting its scalability limits: It is intrinsically hard to further increase its density. Storage-Class Memory (SCM) is a group of novel memory technologies that promise to alleviate DRAM’s scalability limits. They combine the non-volatility, density, and economic characteristics of storage media with the byte-addressability and a latency close to that of DRAM. Therefore, SCM can serve as persistent main memory, thereby bridging the gap between main memory and storage. In this dissertation, we explore the impact of SCM as persistent main memory on database systems. Assuming a hybrid SCM-DRAM hardware architecture, we propose a novel software architecture for database systems that places primary data in SCM and directly operates on it, eliminating the need for explicit IO. This architecture yields many benefits: First, it obviates the need to reload data from storage to main memory during recovery, as data is discovered and accessed directly in SCM. Second, it allows replacing the traditional logging infrastructure by fine-grained, cheap micro-logging at data-structure level. Third, secondary data can be stored in DRAM and reconstructed during recovery. Fourth, system runtime information can be stored in SCM to improve recovery time. Finally, the system may retain and continue in-flight transactions in case of system failures. However, SCM is no panacea as it raises unprecedented programming challenges. Given its byte-addressability and low latency, processors can access, read, modify, and persist data in SCM using load/store instructions at a CPU cache line granularity. The path from CPU registers to SCM is long and mostly volatile, including store buffers and CPU caches, leaving the programmer with little control over when data is persisted. Therefore, there is a need to enforce the order and durability of SCM writes using persistence primitives, such as cache line flushing instructions. This in turn creates new failure scenarios, such as missing or misplaced persistence primitives. We devise several building blocks to overcome these challenges. First, we identify the programming challenges of SCM and present a sound programming model that solves them. Then, we tackle memory management, as the first required building block to build a database system, by designing a highly scalable SCM allocator, named PAllocator, that fulfills the versatile needs of database systems. Thereafter, we propose the FPTree, a highly scalable hybrid SCM-DRAM persistent B+-Tree that bridges the gap between the performance of transient and persistent B+-Trees. Using these building blocks, we realize our envisioned database architecture in SOFORT, a hybrid SCM-DRAM columnar transactional engine. We propose an SCM-optimized MVCC scheme that eliminates write-ahead logging from the critical path of transactions. Since SCM -resident data is near-instantly available upon recovery, the new recovery bottleneck is rebuilding DRAM-based data. To alleviate this bottleneck, we propose a novel recovery technique that achieves nearly instant responsiveness of the database by accepting queries right after recovering SCM -based data, while rebuilding DRAM -based data in the background. Additionally, SCM brings new failure scenarios that existing testing tools cannot detect. Hence, we propose an online testing framework that is able to automatically simulate power failures and detect missing or misplaced persistence primitives. Finally, our proposed building blocks can serve to build more complex systems, paving the way for future database systems on SCM
    • …
    corecore