452 research outputs found

    On the Intriguing Problem of Counting (n+1,n+2)-Core Partitions into Odd Parts

    Full text link
    Tewodros Amdeberhan and Armin Straub initiated the study of enumerating subfamilies of the set of (s,t)-core partitions. While the enumeration of (n+1,n+2)-core partitions into distinct parts is relatively easy (in fact it equals the Fibonacci number F_{n+2}), the enumeration of (n+1,n+2)-core partitions into odd parts remains elusive. Straub computed the first eleven terms of that sequence, and asked for a "formula," or at least a fast way, to compute many terms. While we are unable to find a "fast" algorithm, we did manage to find a "faster" algorithm, which enabled us to compute 23 terms of this intriguing sequence. We strongly believe that this sequence has an algebraic generating function, since a "sister sequence" (see the article), is OEIS sequence A047749 that does have an algebraic generating function. One of us (DZ) is pledging a donation of 100 dollars to the OEIS, in honor of the first person to generate sufficiently many terms to conjecture (and prove non-rigorously) an algebraic equation for the generating function of this sequence, and another 100 dollars for a rigorous proof of that conjecture. Finally, we also develop algorithms that find explicit generating functions for other, more tractable, families of (n+1,n+2)-core partitions.Comment: 12 pages, accompanied by Maple package. This version announces that our questions were all answered by Paul Johnson, and a donation to the OEIS, in his honor, has been mad

    The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area

    Get PDF
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and EU. It is revealed in the paper that at infinity the snowflake is not unique, i.e., different snowflakes can be distinguished for different infinite numbers of steps executed during the process of their generation. It is then shown that for any given infinite number n of steps it becomes possible to calculate the exact infinite number, Nn, of sides of the snowflake, the exact infinitesimal length, Ln, of each side and the exact infinite perimeter, Pn, of the Koch snowflake as the result of multiplication of the infinite Nn by the infinitesimal Ln. It is established that for different infinite n and k the infinite perimeters Pn and Pk are also different and the difference can be infinite. It is shown that the finite areas An and Ak of the snowflakes can be also calculated exactly (up to infinitesimals) for different infinite n and k and the difference An − Ak results to be infinitesimal. Finally, snowflakes constructed starting from different initial conditions are also studied and their quantitative characteristics at infinity are computed

    Complete Issue 14, 1996

    Get PDF

    Extended Rate, more GFUN

    Get PDF
    We present a software package that guesses formulae for sequences of, for example, rational numbers or rational functions, given the first few terms. We implement an algorithm due to Bernhard Beckermann and George Labahn, together with some enhancements to render our package efficient. Thus we extend and complement Christian Krattenthaler's program Rate, the parts concerned with guessing of Bruno Salvy and Paul Zimmermann's GFUN, the univariate case of Manuel Kauers' Guess.m and Manuel Kauers' and Christoph Koutschan's qGeneratingFunctions.m.Comment: 26 page

    Resource optimization for fault-tolerant quantum computing

    Get PDF
    In this thesis we examine a variety of techniques for reducing the resources required for fault-tolerant quantum computation. First, we show how to simplify universal encoded computation by using only transversal gates and standard error correction procedures, circumventing existing no-go theorems. We then show how to simplify ancilla preparation, reducing the cost of error correction by more than a factor of four. Using this optimized ancilla preparation, we develop improved techniques for proving rigorous lower bounds on the noise threshold. Additional overhead can be incurred because quantum algorithms must be translated into sequences of gates that are actually available in the quantum computer. In particular, arbitrary single-qubit rotations must be decomposed into a discrete set of fault-tolerant gates. We find that by using a special class of non-deterministic circuits, the cost of decomposition can be reduced by as much as a factor of four over state-of-the-art techniques, which typically use deterministic circuits. Finally, we examine global optimization of fault-tolerant quantum circuits under physical connectivity constraints. We adapt techniques from VLSI in order to minimize time and space usage for computations in the surface code, and we develop a software prototype to demonstrate the potential savings.Comment: 231 pages, Ph.D. thesis, University of Waterlo
    • …
    corecore