480 research outputs found

    Evolutionary Networks for Multi-Behavioural Robot Control : A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science Massey University, Albany, New Zealand

    Get PDF
    Artificial Intelligence can be applied to a wide variety of real world problems, with varying levels of complexity; nonetheless, real world problems often demand for capabilities that are difficult, if not impossible to achieve using a single Artificial Intelligence algorithm. This challenge gave rise to the development of hybrid systems that put together a combination of complementary algorithms. Hybrid approaches come at a cost however, as they introduce additional complications for the developer, such as how the algorithms should interact and when the independent algorithms should be executed. This research introduces a new algorithm called Cascading Genetic Network Programming (CGNP), which contains significant changes to the original Genetic Network Programming. This new algorithm has the facility to include any Artificial Intelligence algorithm into its directed graph network, as either a judgement or processing node. CGNP introduces a novel ability for a scalable multiple layer network, of independent instances of the CGNP algorithm itself. This facilitates problem subdivision, independent optimisation of these underlying layers and the ability to develop varying levels of complexity, from individual motor control to high level dynamic role allocation systems. Mechanisms are incorporated to prevent the child networks from executing beyond their requirement, allowing the parent to maintain control. The ability to optimise any data within each node is added, allowing for general purpose node development and therefore allowing node reuse in a wide variety of applications without modification. The abilities of the Cascaded Genetic Network Programming algorithm are demonstrated and proved through the development of a multi-behavioural robot soccer goal keeper, as a testbed where an individual Artificial Intelligence system may not be sufficient. The overall role is subdivided into three components and individually optimised which allow the robot to pursue a target object or location, rotate towards a target and provide basic functionality for defending a goal. These three components are then used in a higher level network as independent nodes, to solve the overall multi- behavioural goal keeper. Experiments show that the resulting controller defends the goal with a success rate of 91%, after 12 hours training using a population of 400 and 60 generations

    Genetic algorithm for controllers in elevator groups: analysis and simulation during lunchpeak traffic

    Get PDF
    The efficient performance of elevator group system controllers becomes a first order necessity when the buildings have a high utilisation ratio of the elevators, such as in professional buildings. We present a genetic algorithm that is compared with traditional controller algorithms in industry applications. An ARENA simulation scenario is created during heavy lunchpeak traffic conditions. The results allow us to affirm that our genetic algorithm reaches a better performance attending to the system waiting times than THV algorithm

    Design and analysis of a tool for planning and simulating dynamic vertical transport

    Get PDF
    Nowadays, most of the main companies in the vertical transport industry are researching tools capable of providing support for the design process of elevator systems. Numerous decisions have to be taken to obtain an accurate, comfortable, and high-quality service. Effectively, the optimization algorithm is a key factor in the design process, but so are the number of cars being installed, their technical characteristics, the kinematics of the elevator group, and some other design parameters, which cause the selection task of the elevator system to be a complex one. In this context, the design of decision support tools is becoming a real necessity that most important companies are including as part of their strategic plans. In this article, the authors present a user-friendly planning and simulating tool for dynamic vertical traffic. The tool is conceptualized for giving support in the planning and design stage of the elevator system, in order to collaborate in the selection of the type of elevator (number, type of dynamic, capacity, etc.) and the optimization algorithm

    A Double-Deck Elevator Group Supervisory Control System Using Genetic Network Programming

    Full text link

    From coder to creator : responsibility issues in intelligent artifact design

    Full text link
    Creation of autonomously acting, learning artifacts has reached a point where humans cannot any more be justly held responsible for the actions of certain types of machines. Such machines learn during operation, thus continuously changing their original behaviour in uncontrollable (by the initial manufacturer) ways. They act without effective supervision and have an epistemic advantage over humans, in that their extended sensory apparatus, their superior processing speed and perfect memory render it impossible for humans to supervise the machine\u27s decisions in real-time. We survey the techniques of artificial intelligence engineering, showing that there has been a shift in the role of the programmer of such machines from a coder (who has complete control over the program in the machine) to a mere creator of software organisms which evolve and develop by themselves. We then discuss the problem of responsibility ascription to such machines, trying to avoid the metaphysical pitfalls of the mind-body problem. We propose five criteria for purely legal responsibility, which are in accordance both with the findings of contemporary analytic philosophy and with legal practise. We suggest that Stahl\u27s (2006) concept of quasi-responsibility might also be a way to handle the responsibility gap

    Hybrid of multi-car elevator system and double-deck elevator system

    Get PDF
    Multi-car elevator system is a new breakthrough in an elevator system in 2001. It has broken the traditional concept of developing only one elevator car in an elevator shaft. Multi-car elevator system can have more than one elevator car moving in an elevator shaft and it has improved a lot in minimizing the waiting time of passengers if compared with only one elevator car in an elevator shaft. The main advantage of multi-car elevator system is to reduce the construction cost where 30% of the core-tube area of the elevator system is made up of shaft. By developing multi-car elevator system, many of elevator shafts need not to be developed and it still can perform about the same efficiency in serving passengers. However, it is still not able to transport a large number of passengers efficiently if the passengers are calling from the same floor, especially during the up-peak traffic. For that reason, the feature of double-deck elevator system is integrated into multi-car elevator system to develop a new hybridized elevator system called “Hybrid of multi-car elevator system and double-deck elevator system” to solve the limited car capacity problem. The performance of both systems, the hybridized elevator system and the multi-car elevator system is simulated. The result shows that the average journey time of the hybridized elevator system is shorter than the multicar elevator system in all the three traffic modes, i.e. up-peak, down-peak and inter-floor traffics. For the up-peak traffic mode of the hybridized elevator system, it manages to achieve the best result of 33.5% shorter of the average journey time compared to the multi-car elevator system

    A review of multi-car elevator system

    Get PDF
    This paper presents a review of a new generation of elevator system, the Multi-Car Elevator System. It is an elevator system which contains more than one elevator car in the elevator shaft. In the introduction, it explains why the Multi-Car Elevator System is a new trend elevator system based on its structural design, cost saving and efficiency in elevator system. Different types of Multi-Car Elevator System such as circulation or loop-type, non-circulation and bifurcate circulation are described in section 2. In section 3, researches on dispatch strategies, control strategies and avoidance of car collision strategies of Multi-Car Elevator System since 2002 are reviewed. In the discussion section, it reveals some drawbacks of the Multi-Car Elevator System in transport capability and the risk of car collision. There are recommendations to the future work as well

    Stock market prediction using weighted inter-transaction class association rule mining and evolutionary algorithm

    Get PDF
    Evolutionary computation and data mining are two fascinating fields that have attracted many researchers. This paper proposes a new rule mining method, named genetic network programming (GNP), to solve the prediction problem using the evolutionary algorithm. Compared with the conventional association rule methods that do not consider the weight factor, the proposed algorithm provides many advantages in financial prediction, since it can discover relationships among the attributes of different transactions. Experimental results on data from the New York Exchange Market show that the new method outperforms other conventional models in terms of both accuracy and profitability, and the proposed method can establish more important and accurate rules than the conventional methods. The results confirmed the effectiveness of the proposed data mining method in financial prediction
    corecore