235 research outputs found

    Infinite matroids in graphs

    Get PDF
    It has recently been shown that infinite matroids can be axiomatized in a way that is very similar to finite matroids and permits duality. This was previously thought impossible, since finitary infinite matroids must have non-finitary duals. In this paper we illustrate the new theory by exhibiting its implications for the cycle and bond matroids of infinite graphs. We also describe their algebraic cycle matroids, those whose circuits are the finite cycles and double rays, and determine their duals. Finally, we give a sufficient condition for a matroid to be representable in a sense adapted to infinite matroids. Which graphic matroids are representable in this sense remains an open question.Comment: Figure correcte

    Axioms for infinite matroids

    Full text link
    We give axiomatic foundations for non-finitary infinite matroids with duality, in terms of independent sets, bases, circuits, closure and rank. This completes the solution to a problem of Rado of 1966.Comment: 33 pp., 2 fig

    Binary matroids and local complementation

    Full text link
    We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.Comment: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication versio

    Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids

    Get PDF
    The chromatic polynomial P_G(q) of a loopless graph G is known to be nonzero (with explicitly known sign) on the intervals (-\infty,0), (0,1) and (1,32/27]. Analogous theorems hold for the flow polynomial of bridgeless graphs and for the characteristic polynomial of loopless matroids. Here we exhibit all these results as special cases of more general theorems on real zero-free regions of the multivariate Tutte polynomial Z_G(q,v). The proofs are quite simple, and employ deletion-contraction together with parallel and series reduction. In particular, they shed light on the origin of the curious number 32/27.Comment: LaTeX2e, 49 pages, includes 5 Postscript figure
    • …
    corecore