41 research outputs found

    Elementary recursive complexity results in real algebraic geometry (Women in Mathematics)

    Get PDF
    I shall discuss two important results in real algebraic geometry - quantifier elimination, proving that the projection of a semi-algebraic set is semi-algebraic - Hilbert 17th problem, proving that a non negative polynomial is always a sum of squares of rational functions from the point of view of effectivity and complexity. The two problems look at first sight totally un related at all but it turns out that modern computer algebra techniques play a key role in proving elementary recursive complexity results for both these problems

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    Polar Varieties, Real Equation Solving and Data-Structures: The hypersurface case

    Get PDF
    In this paper we apply for the first time a new method for multivariate equation solving which was developed in \cite{gh1}, \cite{gh2}, \cite{gh3} for complex root determination to the {\em real} case. Our main result concerns the problem of finding at least one representative point for each connected component of a real compact and smooth hypersurface. The basic algorithm of \cite{gh1}, \cite{gh2}, \cite{gh3} yields a new method for symbolically solving zero-dimensional polynomial equation systems over the complex numbers. One feature of central importance of this algorithm is the use of a problem--adapted data type represented by the data structures arithmetic network and straight-line program (arithmetic circuit). The algorithm finds the complex solutions of any affine zero-dimensional equation system in non-uniform sequential time that is {\em polynomial} in the length of the input (given in straight--line program representation) and an adequately defined {\em geometric degree of the equation system}. Replacing the notion of geometric degree of the given polynomial equation system by a suitably defined {\em real (or complex) degree} of certain polar varieties associated to the input equation of the real hypersurface under consideration, we are able to find for each connected component of the hypersurface a representative point (this point will be given in a suitable encoding). The input equation is supposed to be given by a straight-line program and the (sequential time) complexity of the algorithm is polynomial in the input length and the degree of the polar varieties mentioned above.Comment: Late

    Real Algebraic Geometry With a View Toward Moment Problems and Optimization

    Get PDF
    Continuing the tradition initiated in MFO workshop held in 2014, the aim of this workshop was to foster the interaction between real algebraic geometry, operator theory, optimization, and algorithms for systems control. A particular emphasis was given to moment problems through an interesting dialogue between researchers working on these problems in finite and infinite dimensional settings, from which emerged new challenges and interdisciplinary applications
    corecore