1,070 research outputs found

    Visualizing Interstellar's Wormhole

    Get PDF
    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie. (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie. (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres. (iv) Implementing this map, for example in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole. (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees---which is precisely how Christopher Nolan, using our implementation, chose the parameters for \emph{Interstellar}'s wormhole. (vi) Using the student's implementation, exploring the wormhole's Einstein ring, and particularly the peculiar motions of star images near the ring; and exploring what it looks like to travel through a wormhole.Comment: 14 pages and 13 figures. In press at American Journal of Physics. Minor revisions; primarily insertion of a new, long reference 15 at the end of Section II.

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Element sets for high-order Poincar\'e mapping of perturbed Keplerian motion

    Get PDF
    The propagation and Poincar\'e mapping of perturbed Keplerian motion is a key topic in celestial mechanics and astrodynamics, e.g. to study the stability of orbits or design bounded relative trajectories. The high-order transfer map (HOTM) method enables efficient mapping of perturbed Keplerian orbits over many revolutions. For this, the method uses the high-order Taylor expansion of a Poincar\'e or stroboscopic map, which is accurate close to the expansion point. In this paper, we investigate the performance of the HOTM method using different element sets for building the high-order map. The element sets investigated are the classical orbital elements, modified equinoctial elements, Hill variables, cylindrical coordinates and Deprit's ideal elements. The performances of the different coordinate sets are tested by comparing the accuracy and efficiency of mapping low-Earth and highly-elliptical orbits perturbed by J2J_2 with numerical propagation. The accuracy of HOTM depends strongly on the choice of elements and type of orbit. A new set of elements is introduced that enables extremely accurate mapping of the state, even for high eccentricities and higher-order zonal perturbations. Finally, the high-order map is shown to be very useful for the determination and study of fixed points and centre manifolds of Poincar\'e maps.Comment: Pre-print of journal articl

    Systematic construction of efficient six-stage fifth-order explicit Runge-Kutta embedded pairs without standard simplifying assumptions

    Get PDF
    This thesis examines methodologies and software to construct explicit Runge-Kutta (ERK) pairs for solving initial value problems (IVPs) by constructing efficient six-stage fifth-order ERK pairs without standard simplifying assumptions. The problem of whether efficient higher-order ERK pairs can be constructed algebraically without the standard simplifying assumptions dates back to at least the 1960s, with Cassity's complete solution of the six-stage fifth-order order conditions. Although RK methods based on the six-stage fifth-order order conditions have been widely studied and have continuing practical importance, prior to this thesis, the aforementioned complete solution to these order conditions has no published usage beyond the original series of publications by Cassity in the 1960s. The complete solution of six-stage fifth-order ERK order conditions published by Cassity in 1969 is not in a formulation that can easily be used for practical purposes, such as a software implementation. However, it is shown in this thesis that when the order conditions are solved and formulated appropriately using a computer algebra system (CAS), the generated code can be used for practical purposes and the complete solution is readily extended to ERK pairs. The condensed matrix form of the order conditions introduced by Cassity in 1969 is shown to be an ideal methodology, which probably has wider applicability, for solving order conditions using a CAS. The software package OCSage developed for this thesis, in order to solve the order conditions and study the properties of the resulting methods, is built on top of the Sage CAS. However, in order to effectively determine that the constructed ERK pairs without standard simplifying assumptions are in fact efficient by some well-defined criteria, the process of selecting the coefficients of ERK pairs is re-examined in conjunction with a sufficient amount of performance data. The pythODE software package developed for this thesis is used to generate a large amount of performance data from a large selection of candidate ERK pairs found using OCSage. In particular, it is shown that there is unlikely to be a well-defined methodology for selecting optimal pairs for general-purpose use, other than avoiding poor choices of certain properties and ensuring the error coefficients are as small as possible. However, for IVPs from celestial mechanics, there are obvious optimal pairs that have specific values of a small subset of the principal error coefficients (PECs). Statements seen in the literature that the best that can be done is treating all PECs equally do not necessarily apply to at least some broad classes of IVPs. By choosing ERK pairs based on specific values of individual PECs, not only are ERK pairs that are 20-30% more efficient than comparable published pairs found for test sets of IVPs from celestial mechanics, but the variation in performance between the best and worst ERK pairs that otherwise would seem to have similar properties is reduced from a factor of 2 down to as low as 15%. Based on observations of the small number of IVPs of other classes in common IVP test sets, there are other classes of IVPs that have different optimal values of the PECs. A more general contribution of this thesis is that it specifically demonstrates how specialized software tools and a larger amount of performance data than is typical can support novel empirical insights into numerical methods
    • …
    corecore