3,129 research outputs found

    Some open problems on permutation patterns

    Full text link
    This is a brief survey of some open problems on permutation patterns, with an emphasis on subjects not covered in the recent book by Kitaev, \emph{Patterns in Permutations and words}. I first survey recent developments on the enumeration and asymptotics of the pattern 1324, the last pattern of length 4 whose asymptotic growth is unknown, and related issues such as upper bounds for the number of avoiders of any pattern of length kk for any given kk. Other subjects treated are the M\"obius function, topological properties and other algebraic aspects of the poset of permutations, ordered by containment, and also the study of growth rates of permutation classes, which are containment closed subsets of this poset.Comment: 20 pages. Related to upcoming talk at the British Combinatorial Conference 2013. To appear in London Mathematical Society Lecture Note Serie

    On a conjecture on exponential Diophantine equations

    Full text link
    We study the solutions of a Diophantine equation of the form ax+by=cza^x+b^y=c^z, where a2(mod4)a\equiv 2 \pmod 4, b3(mod4)b\equiv 3 \pmod 4 and gcd(a,b,c)=1\gcd (a,b,c)=1. The main result is that if there exists a solution (x,y,z)=(2,2,r)(x,y,z)=(2,2,r) with r>1r>1 odd then this is the only solution in integers greater than 1, with the possible exception of finitely many values (c,r)(c,r). We also prove the uniqueness of such a solution if any of aa, bb, cc is a prime power. In a different vein, we obtain various inequalities that must be satisfied by the components of a putative second solution

    Critical manifold of the kagome-lattice Potts model

    Full text link
    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure
    corecore