56 research outputs found

    Personal Knowledge Models with Semantic Technologies

    Get PDF
    Conceptual Data Structures (CDS) is a unified meta-model for representing knowledge cues in varying degrees of granularity, structuredness, and formality. CDS consists of: (1) A simple, expressive data-model; (2) A relation ontology which unifies the relations found in cognitive models of personal knowledge management tools, e. g., documents, mind-maps, hypertext, or semantic wikis. (3) An interchange format for structured text. Implemented prototypes have been evaluated

    ON THE THEORETICAL FOUNDATIONS OF RESEARCH INTO THE UNDERSTANDABILITY OF BUSINESS PROCESS MODELS

    Get PDF
    Against the background of the growing significance of Business Process Management (BPM) for Information Systems (IS) research and practice, especially the field of Business Process Modeling gains more and more importance. Business process models support communication about as well as the coordination of processes and have become a widely adopted tool in practice. As the understandability of business process models plays a crucial role in communication processes, more and more studies on process model understandability have been conducted in IS research. This article aims at investigating underlying theories of research into business process model understandability by means of an in-depth analysis of 126 systematically retrieved research articles on the topic. It shows in how far process model understandability research is multi-theoretically founded. Identified theories differ regarding addressed subject matters, their coverage, their focus as well as the underlying notion of model understanding, which is exemplarily demonstrated and discussed in this article. Moreover, implications of the findings are discussed and an outlook on future business process model understandability research and on the integration potential of theories in this field is given

    A Framework for Specifying Business Rules Based on Logic with a Syntax Close to Natural Language

    Get PDF
    The systematic interaction of software developers with the business domain experts that are usually no software developers is crucial to software system maintenance and creation and has surfaced as the big challenge of modern software engineering. Existing frameworks promoting the typical programming languages with artificial syntax are suitable to be processed by computers but do not cater to domain experts, who are used to documents written in natural language as a means of interaction.Other frameworks that claim to be fully automated, such as those using natural language processing, are too imprecise to handle the typical requirements documents written in heterogeneous natural language flavours. In this thesis, a framework is proposed that can support the specification of business rules that is, on the one hand, understandable for nonprogrammers and on the other hand semantically founded, which enables computer processability. This is achieved by the novel language Adaptive Business Process and Rule Integration Language (APRIL). Specifications in APRIL can be written in a style close to natural language and are thus suitable for humans, which was empirically evaluated with a representative group of test persons. A useful and uncommon feature of APRIL is the ability to define reusable abstract mixfix operators as sentence patterns, that can mimic natural language. The semantic underpinning of the mixfix operators is achieved by customizable atomic formulas, allowing to tailor APRIL to specific domains. Atomic formulas are underpinned by a denotational semantics, which is based on Tempura (executable subset of Interval Temporal Logic (ITL)) to describe behaviour and the Object Constraint Language (OCL) to describe invariants and pre- and postconditions. APRIL statements can be used as the basis for automatically generating test code for software systems. An additional aspect of enhancing the quality of specification documents comes with a novel formal method technique (ISEPI) applicable to behavioural business rules semantically based on Propositional Interval Temporal Logic (PITL) and complying with the newly discovered 2-to-1 property. This work discovers how the ISE subset of ISEPI can be used to express complex behavioural business rules in a more concise and understandable way. The evaluation of ISE is done by an example specification taken from the car industry describing system behaviour, using the tools MONA and PITL2MONA. Finally, a methodology is presented that helps to guide a continuous transformation starting from purely natural language business rule specification to the APRIL specification which can then be transformed to test code. The methodologies, language concepts, algorithms, tools and techniques devised in this work are part of the APRIL-framework

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Elementary patterns for converting textual and visual formalisms based on set theory and ORM

    No full text
    Contains fulltext : 91765.pdf (publisher's version ) (Closed access)8 p

    A framework for the analysis and evaluation of enterprise models

    Get PDF
    Bibliography: leaves 264-288.The purpose of this study is the development and validation of a comprehensive framework for the analysis and evaluation of enterprise models. The study starts with an extensive literature review of modelling concepts and an overview of the various reference disciplines concerned with enterprise modelling. This overview is more extensive than usual in order to accommodate readers from different backgrounds. The proposed framework is based on the distinction between the syntactic, semantic and pragmatic model aspects and populated with evaluation criteria drawn from an extensive literature survey. In order to operationalize and empirically validate the framework, an exhaustive survey of enterprise models was conducted. From this survey, an XML database of more than twenty relatively large, publicly available enterprise models was constructed. A strong emphasis was placed on the interdisciplinary nature of this database and models were drawn from ontology research, linguistics, analysis patterns as well as the traditional fields of data modelling, data warehousing and enterprise systems. The resultant database forms the test bed for the detailed framework-based analysis and its public availability should constitute a useful contribution to the modelling research community. The bulk of the research is dedicated to implementing and validating specific analysis techniques to quantify the various model evaluation criteria of the framework. The aim for each of the analysis techniques is that it can, where possible, be automated and generalised to other modelling domains. The syntactic measures and analysis techniques originate largely from the disciplines of systems engineering, graph theory and computer science. Various metrics to measure model hierarchy, architecture and complexity are tested and discussed. It is found that many are not particularly useful or valid for enterprise models. Hence some new measures are proposed to assist with model visualization and an original "model signature" consisting of three key metrics is proposed.Perhaps the most significant contribution ofthe research lies in the development and validation of a significant number of semantic analysis techniques, drawing heavily on current developments in lexicography, linguistics and ontology research. Some novel and interesting techniques are proposed to measure, inter alia, domain coverage, model genericity, quality of documentation, perspicuity and model similarity. Especially model similarity is explored in depth by means of various similarity and clustering algorithms as well as ways to visualize the similarity between models. Finally, a number of pragmatic analyses techniques are applied to the models. These include face validity, degree of use, authority of model author, availability, cost, flexibility, adaptability, model currency, maturity and degree of support. This analysis relies mostly on the searching for and ranking of certain specific information details, often involving a degree of subjective interpretation, although more specific quantitative procedures are suggested for some of the criteria. To aid future researchers, a separate chapter lists some promising analysis techniques that were investigated but found to be problematic from methodological perspective. More interestingly, this chapter also presents a very strong conceptual case on how the proposed framework and the analysis techniques associated vrith its various criteria can be applied to many other information systems research areas. The case is presented on the grounds of the underlying isomorphism between the various research areas and illustrated by suggesting the application of the framework to evaluate web sites, algorithms, software applications, programming languages, system development methodologies and user interfaces

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases
    • …
    corecore