524 research outputs found

    Effective dielectric constant of random composite materials

    Get PDF
    The randomness in the structure of two-component dense composite materials influences the scalar effective dielectric constant, in the quasistatic limit. A numerical analysis of this property is developed in this paper. The computer-simulation models used are based on both the finite element method and the boundary integral equation method for two-and three-dimensional structures, respectively. Owing to possible anisotropy the orientation of spatially fixed inhomogeneities of permittivity e1, embedded in a matrix of permittivity e2, affects the effective permittivity of the composite material sample. The primary goal of this paper is to analyze this orientation dependence. Second, the effect of the components geometry on the dielectric properties of the medium is studied. Third the effect of inhomogeneities randomly distributed within a matrix is investigated. Changing these three parameters provides a diverse array of behaviors useful to understand the dielectric properties of random composite materials. Finally, the data obtained from this numerical simulation are compared to the results of previous analytical wor

    Micro-Resonators: The Quest for Superior Performance

    Get PDF
    Microelectromechanical resonators are no longer solely a subject of research in university and government labs; they have found a variety of applications at industrial scale, where their market is predicted to grow steadily. Nevertheless, many barriers to enhance their performance and further spread their application remain to be overcome. In this Special Issue, we will focus our attention to some of the persistent challenges of micro-/nano-resonators such as nonlinearity, temperature stability, acceleration sensitivity, limits of quality factor, and failure modes that require a more in-depth understanding of the physics of vibration at small scale. The goal is to seek innovative solutions that take advantage of unique material properties and original designs to push the performance of micro-resonators beyond what is conventionally achievable. Contributions from academia discussing less-known characteristics of micro-resonators and from industry depicting the challenges of large-scale implementation of resonators are encouraged with the hopes of further stimulating the growth of this field, which is rich with fascinating physics and challenging problems

    Finite element simulation of electrorheological fluids

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, February 2005.Includes bibliographical references (p. 85-88).Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed of liquid crystal polymer. To build more suitable and complicated designs for application of ER fluid, the simulation of ER fluid as well as experiments are important. First, fundamental fluid motions of Newtonian fluids are simulated and checked by comparing them with mathematical calculation. Second, among many models of ER fluid, the Bingham plastic fluid was chosen to represent the ER fluidic behavior in case of the heterogeneous ER fluid. Also, shear stress-strain rate relation of ER fluid was simulated in case of shear modes and pressure modes in both fluids; heterogeneous and homogeneous fluid. Also, the simulated shear strain-stress relationship was compared with experimental results.by Chanryeol Rhyou.S.M

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    Propagation of instability in dielectric elastomers

    Get PDF
    AbstractWhen an electric voltage is applied across the thickness of a thin layer of an dielectric elastomer, the layer reduces its thickness and expands its area. This electrically induced deformation can be rapid and large, and is potentially useful as soft actuators in diverse technologies. Recent experimental and theoretical studies have shown that, when the voltage exceeds some critical value, the homogenous deformation of the layer becomes unstable, and the layer deforms into a mixture of thin and thick regions. Subsequently, as more electric charge is applied, the thin regions enlarge at the expense of the thick regions. On the basis of a recently formulated nonlinear field theory, this paper develops a meshfree method to simulate numerically this instability
    • …
    corecore