1,839 research outputs found

    East Lancashire Research 2007

    Get PDF

    Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior

    Get PDF
    SummaryBrain recordings in large animal models and humans typically rely on a tethered connection, which has restricted the spectrum of accessible experimental and clinical applications. To overcome this limitation, we have engineered a compact, lightweight, high data rate wireless neurosensor capable of recording the full spectrum of electrophysiological signals from the cortex of mobile subjects. The wireless communication system exploits a spatially distributed network of synchronized receivers that is scalable to hundreds of channels and vast environments. To demonstrate the versatility of our wireless neurosensor, we monitored cortical neuron populations in freely behaving nonhuman primates during natural locomotion and sleep-wake transitions in ecologically equivalent settings. The interface is electrically safe and compatible with the majority of existing neural probes, which may support previously inaccessible experimental and clinical research

    Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies

    Get PDF
    This study investigated a mission architecture that allows the systematic and affordable in-situ exploration of small solar system bodies, such as asteroids, comets, and Martian moons (Figure 1). The architecture relies on the novel concept of spacecraft/rover hybrids,which are surface mobility platforms capable of achieving large surface coverage (by attitude controlled hops, akin to spacecraft flight), fine mobility (by tumbling), and coarse instrument pointing (by changing orientation relative to the ground) in the low-gravity environments(micro-g to milli-g) of small bodies. The actuation of the hybrids relies on spinning three internal flywheels. Using a combination of torques, the three flywheel motors can produce a reaction torque in any orientation without additional moving parts. This mobility concept allows all subsystems to be packaged in one sealed enclosure and enables the platforms to be minimalistic. The hybrids would be deployed from a mother spacecraft, which would act as a communication relay to Earth and would aid the in-situ assets with tasks such as localization and navigation (Figure 1). The hybrids are expected to be more capable and affordable than wheeled or legged rovers, due to their multiple modes of mobility (both hopping and tumbling), and have simpler environmental sealing and thermal management (since all components are sealed in one enclosure, assuming non-deployable science instruments). In summary, this NIAC Phase II study has significantly increased the TRL (Technology Readiness Level) of the mobility and autonomy subsystems of spacecraft/rover hybrids, and characterized system engineering aspects in the context of a reference mission to Phobos. Future studies should focus on improving the robustness of the autonomy module and further refine system engineering aspects, in view of opportunities for technology infusion

    Bubble memory module

    Get PDF
    Design, fabrication and test of partially populated prototype recorder using 100 kilobit serial chips is described. Electrical interface, operating modes, and mechanical design of several module configurations are discussed. Fabrication and test of the module demonstrated the practicality of multiplexing resulting in lower power, weight, and volume. This effort resulted in the completion of a module consisting of a fully engineered printed circuit storage board populated with 5 of 8 possible cells and a wire wrapped electronics board. Interface of the module is 16 bits parallel at a maximum of 1.33 megabits per second data rate on either of two interface buses
    corecore