311 research outputs found

    Development of an Electrostatic Air Sampler as an Alternative Method for Aerosol In Vitro Exposure Studies

    Get PDF
    There is growing interest in studying the toxicity and health risk of exposure to multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Additionally, the Health Effects Institute's strategic plan aims to develop and apply next-generation multi-pollutant approaches to understanding the health effects of air pollutants. There's increasing concern that conventional in vitro exposure methods are not adequate to meet EPA’s strategic plan to demonstrate a direct link between air pollution and health effects. To meet the demand for new in vitro technology that better represents direct air-to-cell inhalation exposures, a new system that exposes cells at the air-liquid interface was developed. This new system, named the Gillings Sampler, is a modified two-stage electrostatic precipitator that provides a viable environment for cultured cells. The performance of the sampler was evaluated under controlled laboratory conditions. Fluorescent polystyrene latex spheres were used to determine deposition efficiencies (38-45%), while microscopy and imaging techniques verified particle deposition. Negative control cell exposures indicated the sampler can be operated for up to 4 hours without inducing any significant toxic effects on the cells. A novel positive aerosol control exposure method was also developed to test this system. This new positive control test confirmed that reproducible biological results can be obtained when exposing cultured cells with the Gillings Sampler. Further testing exposing cells to various test atmospheres included diesel exhaust, kerosene soot, secondary organic aerosols, and ozone. Results showed various cell types (human and mouse) can be used with the Gillings Sampler and estimated doses less than 1 μg/cm2 can elicit acute biological effects on cultured cells. These tests demonstrated the advantages of the sampler and also highlighted limitations to be addressed in the future. The Gillings Sampler is intended to be used as an alternative research tool for aerosol in vitro exposure studies and while further testing and optimization is still required to produce a "commercially ready" system, it serves as a stepping-stone in the development of cost-effective in vitro technology that can be made accessible to researchers in the near future.Doctor of Philosoph

    Measuring Aerosol Nanoparticles By Ultraviolet Photoionisation

    Get PDF
    Aerosol particulate matter adversely affects the climate, environment and human health. Mechanistic studies have indicated that ultrafine aerosol nanoparticles, those under 100 nm in diameter, may have significant health impacts due to their relatively high number concentration, surface area and potential for deep penetration into the human lung. However, epidemiological evidence remains limited due to the lack of measurement networks that monitor local concentrations of ultrafine particles. Direct ultraviolet (UV) photoionisation electrically charges aerosol nanoparticles for subsequent detection by a mechanism distinct from the ion-particle collisions of conventional methods. The aim of this work is to evaluate photoionisation theory in order to understand and interpret measurements from a low-cost aerosol particle sensor. To accomplish this, theoretical equations are analysed, modelled and compared with experimental results for validation. The photoelectric yield of aerosol particles is explored in terms of particle size, concentration, material, and morphology giving insight into the interaction of light and particles. This thesis introduces the first analysis of photoionisation, recombination, convection/diffusion and transport of particles in an electric field using analytical, numerical, and computational fluid dynamics (CFD) techniques. Characteristic times and dimensionless parameters are defined to determine regimes under which the measurement system is dominated by each of the charging or transport mechanisms. The level of modelling detail required for accurate prediction of aerosol charging and capture methods is demonstrated over a range of conditions. In a continuous flow of aerosol particles, an electric field is applied to capture charge as it is photoemitted from particles and before the emitted charge and particles can recombine. This method yields a novel current measurement directly representative of photoemission. The CFD model agrees well with electrical current measurements demonstrating that the physics of the problem is suitably represented. It is demonstrated that photoemission is linearly proportional to total (mobility) surface area for a large range of sizes and concentrations of particles of self-similar material and morphology, with agglomerated silver particles having 5Ă—\times yield of agglomerated carbon from a propane flame. It is shown for the first time that agglomerated particles have a significantly higher photoelectric yield (2.6Ă—\times) than sintered, close-packed spheres of the same mobility diameter and material, directly contradicting two of the three previous relevant studies. Close-packed spheres have less material exposed to both the photon flux and the particle's surroundings than an agglomerate of the same particle mobility diameter, thereby reducing photoelectric activity. The photoelectrically active area is defined explicitly in this work to reflect the effect of a particle's morphology; the revised definition produces good agreement with experimental results.Alphasense Ltd., Cambridge Trust, Natural Sciences and Engineering Research Council of Canada (NSERC

    Effects of the electric field on soot formation in combustion: A coupled charged particle PBE-CFD framework

    Get PDF
    In this article, a coupled PBE-CFD framework has been proposed to study counterflow non-premixed flames and soot formation under an external electric field. This framework integrates the population balance equation (PBE) for nanoparticle dynamics into an in-house CFD solver for the multicomponent reactive flows. Different electric properties have been considered in this model. An ion mechanism used in both fuel-rich and fuel-lean combustion is combined with a detailed chemistry for neutral gaseous species and small-size aromatics to retain the full chemistry. In order to model soot particles carrying charges and the movement of the reacting fluid medium in the electric field, a second PBE for the production and transport of charges on soot particles is introduced for the first time and incorporated into the original PBE for the number density of particles. Also, the electric force for the gas mixture is included in the momentum equations. The electric drift velocities for ions and soot particles are also considered in the transport equations of ions and the PBE of soot particles, respectively. The simulations have shown that the presence of the electric field modifies the stagnation plane of the counterflow flames and reduces the soot formation in both rich-fuel and lean-fuel conditions in agreement with experimental observations. The application of the soot particle charging model, accompanied by a proper electric correction factor on the nanoparticle processes of nucleation and surface growth, significantly improves the stability of the flame structure. The introduction of the electric correction factor reveals that the suppression of soot formation in an electric field is mainly caused by the inhibited chemical reactions of the PAH nucleation and particle surface growth, which is more important than the electric drift of the charged particles. Reducing the critical size of the particle charging process enhances the electric drift of nascent soot, thus lessening its subsequent evolution

    Three-Dimensional Modeling of Electrostatic Precipitator Using Hybrid Finite Element - Flux Corrected Transport Technique

    Get PDF
    This thesis presents the results of a three-dimensional simulation of the entire precipitation process inside a single-electrode one-stage electrostatic precipitator (ESP). The model was designed to predict the motion of ions, gas and solid particles. The precipitator consists of two parallel grounded collecting plates with a corona electrode mounted at the center, parallel to the plates and excited with a high dc voltage. The complex mutual interaction between the three coexisting phenomena of electrostatic field, fluid dynamics and the particulate transport, which affect the ESP process, were taken into account in all the simulations. The electrostatic field and ionic space charge density due to corona discharge were computed by numerically solving Poisson and current continuity equations, using a hybrid Finite Element (FEM) - Flux Corrected Transport (FCT) method. The detailed numerical approach and simulation procedure is discussed and applied throughout the thesis. Calculations of the gas flow were carried out by solving the Reynolds-averaged Navier-Stokes equations using the commercial FLUENT 6.2 software, which is based on the Finite Volume Method (FVM). The turbulence effect was included by using the k-ε model included in FLUENT. An additional source term was added to the gas flow equation to include the effect of the electric field, obtained by solving a coupled system of the electric field and charge transport equations, using the User-Defined-Function (UDF) feature of FLUENT. The particle phase was simulated using a Lagrangian-type Discrete Random Walk (DRW) model, where a large number of particles charged by combined field and diffusion charging mechanisms was traced with their motion affected by electrostatic and aerodynamic forces in turbulent flow using the Discrete Phase Model (DPM) and programming UDFs in FLUENT. The airflow patterns under the influence of electrohydrodynamic (EHD) secondary flow and external flows, particle charging and deposition along the channel, and ESP performance in removal of submicron particulates were compared for smooth and spiked discharge electrode configurations in the parallel plate precipitator assuming various particle concentrations at the inlet. Finally, a laboratory scale wire-cylinder ESP to collect conductive submicron diesel particles was modeled. The influence of different inlet gas velocities and excitation voltages on the particle migration velocity and precipitation performance were investigated. In some cases, the simulation results were compared with the existing experimental data published in literature

    Varauksenkuljettaja-agglomeraatit sähköstaattisessa nokianturissa

    Get PDF
    Recently there has been development of a new compact on-board sensor to measure particle mass concentration. This electrical sensor is very compact and simple, and it has a wide measurement range and a short response time. The signal received from the sensor correlates well with results received using other commercial particle mass sensors. The operation principle of the sensor is not totally understood. The sensor collects soot particles using a strong electric field and the current is measured from the depositing soot particles. However, the electric current received from the sensor is approximately three orders of magnitude larger than the current available from the natural charge of the particles. This implies that there must be some kind of process inside the sensor that amplifies the electrical signal. The main hypothesis for this is the electrically stimulated agglomeration. In this phenomenon the soot particles accumulating on the electrodes form dendritic structures due to the electric field inside the sensor. After these dendrites grow to a certain critical length, large fragments called charge carrier agglomerates detach and move into the other electrode. These large agglomerates carry a very large total charge, and thus cause a large current signal in the sensor. In order to validate this hypothesis the properties of the large agglomerate particles have to be well known. To investigate these large agglomerates a sensor mimicking cell was designed and built. This mimic cell consists of three parallel electrodes that can all either be set to a certain electric potential or used to measure accumulating current with an electrometer. The cell was also designed in a way that samples from the fragments could be taken to an electron microscope for further examination. In this thesis the operation principle of the sensor was replicated with the mimic cell and the charge carrier agglomerates were examined. The two main properties, particle diameter and charge number, were defined for the charge carrier agglomerates. It was also investigated if the primary collection field strength had any effect on this phenomenon

    Wet electrostatic scrubbing for high efficiency submicron particle capture

    Get PDF
    Exposure to fine particulate matter has been associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Very fine inhalable particles can remain suspended in the atmosphere for a long time, travel long distances from the emitting sources and, once inhaled, they can reach the deepest regions of the lungs and even enter in the circulatory system. Therefore, the smaller the particle size, the higher its toxicity. In typical combustion units used in process industry, the end-of-pipe technologies include trains of consecutive abatements devices. Nevertheless, the traditional particle abatement devices are mainly designed and optimized to treat particles with sizes above or around 1µm, and they are far less effective towards the submicron dimensions. Among the end-of-pipe technologies, the Wet Scrubbers (WS) are widely utilized in industry due to their capacity to capture simultaneously gaseous pollutants and particles. The main particle collection mechanisms involved in WS are those related to directional interception and inertial impact, which allow high particle abatement efficiency for particles in micrometric range. Both the mechanisms are instead ineffective in the submicron range, thus resulting in low collection efficiencies. It the past 40 years, it was demonstrated that the presence of electric charge of opposite polarities on the particles and the sprayed droplets can increase the capture efficiency due to Coulomb forces between the two phases. The presence of this additional contribution in a scrubber is an upgrade of the traditional wet scrubbing and the new process is commonly referred as Wet Electrostatic Scrubbing (WES). Experimental investigation of the pertinent literature confirmed the ability of WES to increase the particle capture efficiency respect to the classic wet scrubber, but submicron range is generally not directly investigated so that the best operating conditions to increase submicron particle abatement efficiency is still an unsolved problem. This optimization problem is mainly related to the difficulties to model wet electrostatic scrubbing process due to the high number of the variables involved, resulting in a complex experimental evaluation of the main collection mechanisms that are responsible of the particle capture. Above all, a significant hindrance to the assessment of a proper description of wet electrostatic scrubbing is the complexity of the electro-hydrodynamics of the charged water spray. In this work, a new experimental methodology was adopted to perform experiments in controlled conditions in order to allow an easier investigation of the effects of the main physical variables on the abatement of submicron particles emission. This experimental approach is based on the use of a lab scale batch reactor, in which charged particles produced by combustion are inserted. In the reactor, a train of uniform droplet size and charge is used to remove the suspended particles. This approach has the main advantages to make possible to investigate specific parameters (like the effect of droplet charge or its size) under well-defined conditions and therefore model the particle abatement process. Therefore, the objective of this work is the experimental analysis and the modeling of wet electrostatic scrubbing process for submicron particles with the new methodology developed and the evaluation of the influence of the main physical variables on the capture of submicron particles. The results obtained confirm that the particle abatement is significantly enhanced by charging both particles and droplets, and that the particle abatement rate is directly proportional to the particles and droplet charges and droplet concentration. Furthermore, tests with uncharged particles and charged droplets do not show any relevant increase in the scrubbing efficiency with respect to common wet scrubbing in the investigated conditions. The experimental results obtained were compared with the predictions of classical particle scavenging models valid for ambient temperature and humidity conditions. These models were rarely applied to submicron particles and found a reliable experimental support from the performed experiments. On the other hand, this comparison also confirm the reliability of the experimental methodology in the study of wet electrostatic scrubbing and encourage the development of further tests in experimental conditions more similar to that of industrial scrubbers
    • …
    corecore