2,520 research outputs found

    Electrophysiological measurement of the effect of inter-stimulus competition on early cortical stages of human vision

    Get PDF
    AbstractCompetition between inputs in early visual cortex has been established as a key determinant in perception through decades of animal single cell and human fMRI research. We developed a novel ERP paradigm allowing this competition to be studied in humans, affording an opportunity to gain further insight into how competition is reflected at the neural level. Checkerboard stimuli were presented to elicit C1 (indexing processing in V1), C2 (hypothesized to reflect V1 after extrastriate feedback), and P1 (extrastriate) components. Stimuli were presented in three randomized conditions: single stimulus, near proximity pairs and far proximity pairs. Importantly, near stimuli (0.16° visual angle apart) were positioned to compete in primary visual cortex, whereas far stimuli (2° apart) were positioned to compete in extrastriate visual areas.As predicted, the degree and spatial range of competition increased from the C1 component to the C2 and P1 components. Specifically, competitive interactions in C1 amplitude were modest and present only for near-proximity pairs, whereas substantial competition was present for the P1, even for far-proximity pairs. To our knowledge, this is the first study to measure how competition unfolds over time in human visual cortex. Importantly, this method provides an empirical means of measuring competitive interactions at specific stages of visual processing, rendering it possible to rigorously test predictions about the effects of competition on perception, attention, and working memory

    Attentional threat biases and their role in anxiety: A neurophysiological perspective

    Get PDF
    One of the most important function of selective attention is the efficient and accurate detection and identification of cues associated with threat. However, in pathological anxiety, this attentional mechanism seems to be dysfunctional, which leads to an exaggeration of threat processing and significant functional impairment. This attentional threat bias (ATB) has been proposed as a key mechanism in the etiology and maintenance of anxiety disorders. Recently, evidence has accumulated that the behavioral assessment of ATB by means of reaction times is compromised by conceptual and methodological problems. In this review paper we argue that a brain-based assessment of ATB, which includes different mechanistic aspects of biased attention, may provide neuromechanistic knowledge regarding the etiology and maintenance of anxiety, and potentially start identifying different targets for effective treatment. We summarize examples for such an approach, highlighting the strengths of electrophysiological measurements, which include the sensitivity to time dynamics, specificity to specific neurocomputational mechanisms, and the continuous/dimensional nature of the resulting variables. These desirable properties are a prerequisite for developing trans-diagnostic biomarkers of attentional bias, and hence may inform individually tailored treatment approaches

    Neural mechanisms of surround attenuation and distractor competition in visual search

    Get PDF
    Visual attention biases relevant processing in the visual system by amplifying relevant or attenuating irrelevant sensory input. A potential signature of the latter operation, referred to as surround attenuation, has recently been identified in the electromagnetic brain response of human observers performing visual search. It was found that a zone of attenuated cortical excitability surrounds the target when the search required increased spatial resolution for item discrimination. Here we address the obvious hypothesis that surround attenuation serves distractor suppression in the vicinity of the target where interference from irrelevant search items is maximal. To test this hypothesis, surround attenuation was assessed under conditions when the target was presented in isolation versus when it was surrounded by distractors. Surprisingly, substantial and indistinguishable surround attenuation was seen under both conditions, indicating that it reflects an attentional operation independent of the presence of distractors. Adding distractors in the target's surround, however, increased the amplitude of the N2pc-an evoked response known to index distractor competition in visual search. Moreover, adding distractors led to a topographical change of source activity underlying the N2pc toward earlier extrastriate areas. In contrast, the topography of reduced source activity due to surround attenuation remained unaltered with and without distractors in the target's surround. We conclude that surround attenuation is not a direct consequence of the attenuation of distractors in visual search and that it dissociates from attentional operations reflected by the N2pc. A theoretical framework is proposed that links both operations in a common model of top-down attentional selection in visual cortex

    The brain's response to pleasant touch: an EEG investigation of tactile caressing

    Get PDF
    Somatosensation as a proximal sense can have a strong impact on our attitude toward physical objects and other human beings. However, relatively little is known about how hedonic valence of touch is processed at the cortical level. Here we investigated the electrophysiological correlates of affective tactile sensation during caressing of the right forearm with pleasant and unpleasant textile fabrics. We show dissociation between more physically driven differential brain responses to the different fabrics in early somatosensory cortex - the well-known mu-suppression (10-20 Hz) - and a beta-band response (25-30 Hz) in presumably higher-order somatosensory areas in the right hemisphere that correlated well with the subjective valence of tactile caressing. Importantly, when using single trial classification techniques, beta-power significantly distinguished between pleasant and unpleasant stimulation on a single trial basis with high accuracy. Our results therefore suggest a dissociation of the sensory and affective aspects of touch in the somatosensory system and may provide features that may be used for single trial decoding of affective mental states from simple electroencephalographic measurements

    Separable mechanisms underlying global feature-based attention

    Get PDF
    Feature-based attention is known to operate in a spatially global manner, in that the selection of attended features is not bound to the spatial focus of attention. Here we used electromagnetic recordings in human observers to characterize the spatiotemporal signature of such global selection of an orientation feature. Observers performed a simple orientation-discrimination task while ignoring task-irrelevant orientation probes outside the focus of attention. We observed that global feature-based selection, indexed by the brain response to unattended orientation probes, is composed of separable functional components. One such component reflects global selection based on the similarity of the probe with task-relevant orientation values ("template matching"), which is followed by a component reflecting selection based on the similarity of the probe with the orientation value under discrimination in the focus of attention ("discrimination matching"). Importantly, template matching occurs at similar to 150 ms after stimulus onset, similar to 80 ms before the onset of discrimination matching. Moreover, source activity underlying template matching and discrimination matching was found to originate from ventral extrastriate cortex, with the former being generated in more anterolateral and the latter in more posteromedial parts, suggesting template matching to occur in visual cortex higher up in the visual processing hierarchy than discrimination matching. We take these observations to indicate that the population-level signature of global feature-based selection reflects a sequence of hierarchically ordered operations in extrastriate visual cortex, in which the selection based on task relevance has temporal priority over the selection based on the sensory similarity between input representations

    Multisensory Congruency as a Mechanism for Attentional Control over Perceptual Selection

    Get PDF
    The neural mechanisms underlying attentional selection of competing neural signals for awareness remains an unresolved issue. We studied attentional selection, using perceptually ambiguous stimuli in a novel multisensory paradigm that combined competing auditory and competing visual stimuli. We demonstrate that the ability to select, and attentively hold, one of the competing alternatives in either sensory modality is greatly enhanced when there is a matching cross-modal stimulus. Intriguingly, this multimodal enhancement of attentional selection seems to require a conscious act of attention, as passively experiencing the multisensory stimuli did not enhance control over the stimulus. We also demonstrate that congruent auditory or tactile information, and combined auditory–tactile information, aids attentional control over competing visual stimuli and visa versa. Our data suggest a functional role for recently found neurons that combine voluntarily initiated attentional functions across sensory modalities. We argue that these units provide a mechanism for structuring multisensory inputs that are then used to selectively modulate early (unimodal) cortical processing, boosting the gain of task-relevant features for willful control over perceptual awareness

    The role of multisensory integration in the bottom-up and top-down control of attentional object selection

    Get PDF
    Selective spatial attention and multisensory integration have been traditionally considered as separate domains in psychology and cognitive neuroscience. However, theoretical and methodological advancements in the last two decades have paved the way for studying different types of interactions between spatial attention and multisensory integration. In the present thesis, two types of such interactions are investigated. In the first part of the thesis, the role of audiovisual synchrony as a source of bottom-up bias in visual selection was investigated. In six out of seven experiments, a variant of the spatial cueing paradigm was used to compare attentional capture by visual and audiovisual distractors. In another experiment, single-frame search arrays were presented to investigate whether multisensory integration can bias spatial selection via salience-based mechanisms. Behavioural and electrophysiological results demonstrated that the ability of visual objects to capture attention was enhanced when they were accompanied by noninformative auditory signals. They also showed evidence for the bottom-up nature of these audiovisual enhancements of attentional capture by revealing that these enhancements occurred irrespective of the task-relevance of visual objects. In the second part of this thesis, four experiments are reported that investigated the spatial selection of audiovisual relative to visual objects and the guidance of their selection by bimodal object templates. Behavioural and ERP results demonstrated that the ability of task-irrelevant target-matching visual objects to capture attention was reduced during search for audiovisual as compared to purely visual targets, suggesting that bimodal search is guided by integrated audiovisual templates. However, the observation that unimodal targetmatching visual events retained some ability to capture attention indicates that bimodal search is controlled to some extent by modality-specific representations of task-relevant information. In summary, the present thesis has contributed to our knowledge of how attention is controlled in real-life environments by demonstrating that spatial selective attention can be biased towards bimodal objects via salience-driven as well as goal-based mechanisms

    Visual and spatial modulation of tactile extinction: behavioural and electrophysiological evidence

    Get PDF
    Crossing the hands over the midline reduces left tactile extinction to double simultaneous stimulation in right-brain-damaged patients, suggesting that spatial attentional biases toward the ipsilesional (right) side of space contribute to the patients' contralesional (left) deficit. We investigated (1) whether the position of the left hand, and its vision, affected processing speed of tactile stimuli, and (2) the electrophysiological underpinnings of the effect of hand position. (1) Four right-brain-damaged patients with spatial neglect and contralesional left tactile extinction or somatosensory deficits, and eight neurologically unimpaired participants, performed a speeded detection task on single taps delivered on their left index finger. In patients, placing the left hand in the right (heteronymous) hemi-space resulted in faster reaction times (RTs) to tactile stimuli, compared to placing that hand in the left (homonymous) hemi-space, particularly when the hand was visible. By contrast, in controls placing the left hand in the heteronymous hemi-space increased RTs. (2) Somatosensory event-related potentials (ERPs) were recorded from one patient and two controls in response to the stimulation of the left hand, placed in the two spatial positions. In the patient, the somatosensory P70, N140, and N250 components were enhanced when the left hand was placed in the heteronymous hemi-space, whereas in controls these components were not modulated by hand position. The novel findings are that in patients placing the left hand in the right, ipsilesional hemi-space yields a temporal advantage in processing tactile stimuli, and this effect may rely on a modulation of stimulus processing taking place as early as in the primary somatosensory cortex, as indexed by evoked potentials. Furthermore, vision enhances tactile processing specifically when the left hand is placed in the hemi-space toward which the patients' attentional biases are pathologically directed, namely rightwards

    Contextual-Dependent Attention Effect on Crowded Orientation Signals in Human Visual Cortex

    Get PDF
    A target becomes hard to identify with nearby visual stimuli. This phenomenon, known as crowding, places a fundamental limit on conscious perception and object recognition. To understand the neural representation of crowded stimuli, we used fMRI and a forward encoding model to reconstruct the target-specific feature from multivoxel activation patterns evoked by orientation patches. Orientation-selective response profiles were constructed in V1–V4 for a target embedded in different contexts. Subjects of both sexes either directed their attention over all the orientation patches or selectively to the target. In the context with a weak crowding effect, attending to the target enhanced the orientation selectivity of the response profile; such effect increased along the visual pathway. In the context with a strong crowding effect, attending to the target enhanced the orientation selectivity of the response profile in the earlier visual area, but not in V4. The increase and decrease of orientation selectivity along the visual hierarchy demonstrate a contextual-dependent attention effect on crowded orientation signals: in the context with a weak crowding effect, selective attention gradually resolves the target from nearby distractors along the hierarchy; in the context with a strong crowding effect, while selective attention maintains the target feature in the earlier visual area, its effect decreases in the downstream area. Our findings reveal how the human visual system represents the target-specific feature at multiple stages under the limit of attention selection in a cluttered scene
    corecore