7 research outputs found

    PlantES: A plant electrophysiological multi-source data online analysis and sharing platform

    Get PDF
    At present, plant electrophysiological data volumes and complexity are increasing rapidly. It causes the demand for efficient management of big data, data sharing among research groups, and fast analysis. In this paper, we proposed PlantES (Plant Electrophysiological Data Sharing), a distributed computing-based prototype system that can be used to store, manage, visualize, analyze, and share plant electrophysiological data. We deliberately designed a storage schema to manage the multi-source plant electrophysiological data by integrating distributed storage systems HDFS and HBase to access all kinds of files efficiently. To improve the online analysis efficiency, parallel computing algorithms on Spark were proposed and implemented, e.g., plant electrical signals extraction method, the adaptive derivative threshold algorithm, and template matching algorithm. The experimental results indicated that Spark efficiently improves the online analysis. Meanwhile, the online visualization and sharing of multiple types of data in the web browser were implemented. Our prototype platform provides a solution for web-based sharing and analysis of plant electrophysiological multi-source data and improves the comprehension of plant electrical signals from a systemic perspective

    Big data in epilepsy: Clinical and research considerations. Report from the Epilepsy Big Data Task Force of the International League Against Epilepsy

    Get PDF
    Epilepsy is a heterogeneous condition with disparate etiologies and phenotypic and genotypic characteristics. Clinical and research aspects are accordingly varied, ranging from epidemiological to molecular, spanning clinical trials and outcomes, gene and drug discovery, imaging, electroencephalography, pathology, epilepsy surgery, digital technologies, and numerous others. Epilepsy data are collected in the terabytes and petabytes, pushing the limits of current capabilities. Modern computing firepower and advances in machine and deep learning, pioneered in other diseases, open up exciting possibilities for epilepsy too. However, without carefully designed approaches to acquiring, standardizing, curating, and making available such data, there is a risk of failure. Thus, careful construction of relevant ontologies, with intimate stakeholder inputs, provides the requisite scaffolding for more ambitious big data undertakings, such as an epilepsy data commons. In this review, we assess the clinical and research epilepsy landscapes in the big data arena, current challenges, and future directions, and make the case for a systematic approach to epilepsy big data

    Spectral Asymmetry and Higuchi’s Fractal Dimension Measures of Depression Electroencephalogram

    Get PDF
    This study was aimed to compare two electroencephalogram (EEG) analysis methods, spectral asymmetry index (SASI) and Higuchi’s fractal dimension (HFD), for detection of depression. Linear SASI method is based on evaluation of the balance of powers in two EEG frequency bands in one channel selected higher and lower than the alpha band spectrum maximum. Nonlinear HFD method calculates fractal dimension directly in the time domain. The resting EEG signals of 17 depressive patients and 17 control subjects were used as a database for calculations. SASI values were positive for depressive and negative for control group (P0.05). The results indicated that the linear EEG analysis method SASI and the nonlinear HFD method both demonstrated a good sensitivity for detection of characteristic features of depression in a single-channel EEG

    Vuorovaikutteinen visualisointitekniikka biosignaalin analysointiin

    Get PDF
    Sydänsairauksista saadaan lisätietoa tutkimalla sydänsolujen kalsiumsignaalin häiriöitä. Tässä tutkielmassa esitellään kalsiumsignaalien analysointiin kehitetty sovellus, joka pohjautuu visuaalisen analytiikan keinoihin. Sovellus toimii selaimessa, ja se perustuu laskennalliseen analyysiin, jonka tulokset visualisoidaan. Laskennan parametrien muutokset heijastuvat reaaliaikaisesti visualisointiin. Lisäksi sovellus mahdollistaa lääkevasteiden analysoinnin ja vertailun
    corecore