295 research outputs found

    A MATLAB-BASED GUI FOR REMOTE ELECTROOCULOGRAPHY VISUAL EXAMINATION

    Get PDF
    In this work, a MATLAB-based graphical user interface is proposed for the visual examination of several eye movements. The proposed solution is algorithm-based, which localizes the area of the eye movement, removes artifacts, and calculates the view trajectory in terms of direction and orb deviation. To compute the algorithm, a five-electrode configuration is needed. The goodness of the proposed MATLAB-based graphical user interface has been validated, at the Clinic of Child Neurology of University Hospital of Ostrava, through the EEG Wave Program, which was considered as “gold standard” test. The proposed solution can help physicians on studying cerebral diseases, or to be used for the development of human-machine interfaces useful for the improvement of the digital era that surrounds us today

    Comparing eye tracking technologies

    Get PDF
    Abstract. Eye tracking is a technology that monitors eye movements, and by the data, detects gaze directions and target points. The number of potential use cases and capabilities of such technology are huge, and at the time being, there are at least five commercial VR headsets with built-in eye tracking systems. The aim of this study is to compare the performance of eye tracking technologies with two devices. We compare the eye tracking glasses from SeeTrue Technologies against Varjo Aero’s eye tracking system and evaluate, would it be worthwhile to place SeeTrue’s eye tracking technology into university’s headsets, which have no eye tracking capabilities at all, or is it better to use Varjo’s device, whenever eye tracking is needed. Motivated by previous research, we built a physical setup for SeeTrue device and virtual setup for Varjo device, in which the participant is directed to look at a white target dot shown on the black screen. We decided to use a moving target dot and a target dot, which changes its position on the screen, but stays at one place for two seconds. From the scripts that control the target dot position, actual positions of the targets were collected and compared with the gaze target positions that were received by the eye tracking devices. In our study, we used accuracy and precision as measures of performance. According to the results of this study, Varjo performed better, and the results stand for using Varjo’s device when eye tracking is needed, instead of placing SeeTrue’s system into headsets, which have no eye tracking capabilities. However, both devices were easy to use and highly capable of eye tracking. We recorded the results of mean error in visual angle within five degrees on both devices, and even with the moving target. This study, along with the other studies in the field, gives an idea and methodologies to one kind of performance testing of eye tracking devices

    Aging and eye tracking:in the quest for objective biomarkers

    Get PDF

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    VCare: A Personal Emergency Response System to Promote Safe and Independent Living Among Elders Staying by Themselves in Community or Residential Settings

    Get PDF
    ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. Advisor: Tadeusz Wysock

    Dreamento: an open-source dream engineering toolbox for sleep EEG wearables

    Full text link
    We introduce Dreamento (Dream engineering toolbox), an open-source Python package for dream engineering utilizing the ZMax (Hypnodyne Corp., Sofia, Bulgaria) headband sleep wearable. Dreamento main functions are (1) real-time recording, monitoring, analysis, and stimulation in a graphical user interface (GUI) (2) and offline post-processing of the resulting data. In real-time, Dreamento is capable of (1) recording data, (2) visualizing data, including power-spectrum analysis and navigation, (3) automatic sleep-scoring, (4) sensory stimulation (visual, auditory, tactile), (5) establishing text-to-speech communication, and (6) managing the annotations of automatic and manual events. The offline functionality aids in post-processing the acquired data with features to reformat the wearable data and integrate it with non-wearable recorded modalities such as electromyography. While the primary application of Dreamento was developed for (lucid) dreaming studies, it is open to being adapted for other purposes and measurement modalities

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    A Comparison of Real-Time Extraction between Chebyshev and Butterworth Method for SSVEP Brain Signals

    Get PDF
    In this paper, a comparison of real-time extraction using the IIR Chebyshev of 4 order and the IIR Butterworth of 6 order methods is proposed. In the Experiment, the steady-state visual evoked potential with stimuli frequencies of 7,5 10, 15, and 20 Hz is used to control the wheelchair directions (i.e., stop, forward, right, and left). The data were collected from a session in which fourteen subjects with age about 24±2 years were tested. The total average classification accuracy of 82% and 62.2% for Chebychev and Butterworth extraction method are achieved. The higher average classification accuracy of 100% and 92.8% for both methods, respectively, are obtained for forward direction (8.75-12.5Hz)
    corecore