60 research outputs found

    Analysis of sleep EEG signal

    Get PDF
    Cílem této práce byl vývoj programu pro automatickou detekci arousalu v signálu spánkového EEG s použitím metod časově-frekvenční analýzy. Předmětem studie bylo 13 celonočních polysomnografických nahrávek (čtyři svody EEG, EMG, EKG a EOG), tj. celkově více než 100 hodin záznamu. Jednalo se o část dat z dřívějších výzkumných prací expertní lékařky v problematice spánku Dr. Emilie Sforzy, Ženeva, Švýcarsko, která rovněž poskytla základní hodnocení těchto dat. V záznamech bylo celkem označeno 1551 arousal událostí. Pro usnadnění výběru konkrétní metody časově-frekvenční analýzy byla následně vytvořena sada nástrojů pro vizualizaci jednotlivých signálů a jejich různých časově-frekvenčních vyjádření. S ohledem na závěry vizuální analýzy, charakter signálu EEG a efektivitu výpočetních metod byla pro analýzu vybrána waveletová transformace s mateřskou vlnkou Daubechies řádu 6. Jednotlivé svody EEG byly dekomponovány do šesti frekvenčních pásem. Z takto odvozených signálů a signálu EMG byly následně stanoveny ukazatele možné přítomnosti události arousalu. Tyto ukazatele byly dále váhovány lineárním klasifikátorem, jehož hodnoty vah byly optimalizovány pomocí genetického algoritmu. Na základě hodnoty lineárního klasifikátoru bylo rozhodnuto o přítomnosti události arousalu v daném svodě EEG – arousal byl detekován, jestliže hodnota klasifikátoru překročila danou mez na dobu více než 3 a méně než 30 vteřin. V celém záznamu pak byl arousal označen, byl-li detekován alespoň v jednom ze svodů EEG. Následně byly odvozeny míry senzitivity a selektivity detekce, jež byly rovněž základem pro stanovení fitness funkce genetického algoritmu. Pro učení genetického algoritmu byly vybrány první čtyři záznamy. Na základě takto optimalizovaných vah vznikl program pro automatickou detekci, který na celém souboru 13 záznamů dosáhl ve srovnání s expertním hodnocením míry senzitivity 76,09%, selektivity 53,26% a specificity 97,66%.The aim of this study was to develop an automatic detection program for scoring the sleep EEG arousals, based on one of time-frequency analysis methods. The subject of the study was 13 overnight polysomnographic recordings (four leads of EEG, EMG, ECG and EOG), i.e over 100 hours in total. It was a subset of data used in former studies by sleep expert Dr. Emilia Sforza, Geneva, Switzerland, who also provided baseline arousal scoring. Total number of 1551 arousal events were marked in the recordings. Next, several tools for recordings' visualization were developed to facilitate the decision on methods of analysis. Following the conclusions made after extensive visualization of input recordings in different time-frequency representations and regarding the character of EEG as neuroelectric waveforms and computing efficiency, discrete wavelet decomposition with Daubechies order 6 mother wavelet was chosen. The EEG signals were decomposed into six frequency bands. The results together with EMG recordings were used to evaluate a set of indices describing EEG and EMG changes accompanying arousals. These indices were weighted to form linear classifier of microarousal suspicion in each EEG lead – a microarousal was marked as present when it remained suspect in period of 3 to 30 seconds. Outputs of four EEG channels were then integrated to report final outcome. Based on sensitivity and selectivity measures the algorithm was optimized by genetic algorithm. The subject of tuning were the linear classifier parameters and first four of 13 recordings were selected as training data. A microarousal detection program emerged on basis of the tuned algorithm and resulted in average sensitivity of 76,09 %, selectivity of 53,26 % and 97,66 % specificity over all 13 recordings compared to expert visual scorings.

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    Detection and removal of eyeblink artifacts from EEG using wavelet analysis and independent component analysis

    Get PDF
    Electrical signals generated by brain activity that are measured by the electroencephalogram can be distorted by electrical activity originating from eyeblinks and eye movements. This thesis proposes a new technique to identify and remove eyeblink artifacts from EEG data. An algorithm using a combination of wavelet analysis and independent component analysis (ICA) is implemented to detect the temporal location of the eyeblink artifact and eliminate it without compromising the integrity of the primary EEG data. The discrete wavelet transform is performed on 10 second epochs of data to detect the occurrence of ocular artifact. ICA is used to separate out the independent components within the data and the temporal locations of the eyeblink are used to remove the artifact and reconstruct the EEG data without that source of distortion. The results obtained indicate that the technique implemented may be robust enough to effectively process EEG data and is capable of removing eyeblink artifacts successfully when they are prominent and the data does not contain a great deal of movement artifact. The results show an 88.68% detection rate, a false positive rate of 4.03%, and an 87.23% removal rate for all eyeblinks that were accurately detected. The statistics obtained compared favorably with work done by others in this field of investigation

    EEG-induced Fear-type Emotion Classification Through Wavelet Packet Decomposition, Wavelet Entropy, and SVM

    Get PDF
    Among the most significant characteristics of human beings is their ability to feel emotions. In recent years, human-machine interface (HM) research has centered on ways to empower the classification of emotions. Mainly, human-computer interaction (HCI) research concentrates on methods that enable computers to reveal the emotional states of humans. In this research, an emotion detection system based on visual IAPPS pictures through EMOTIV EPOC EEG signals was proposed. We employed EEG signals acquired from channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) for individuals in a visual induced setting (IAPS fear and neutral aroused pictures). The wavelet packet transform (WPT) combined with the wavelet entropy algorithm was applied to the EEG signals. The entropy values were extracted for every two classes. Finally, these feature matrices were fed into the SVM (Support Vector Machine) type classifier to generate the classification model. Also, we evaluated the proposed algorithm as area under the ROC (Receiver Operating Characteristic) curve, or simply AUC (Area under the curve) was utilized as an alternative single-number measure. Overall classification accuracy was obtained at 91.0%. For classification, the AUC value given for SVM was 0.97. The calculations confirmed that the proposed approaches are successful for the detection of the emotion of fear stimuli via EMOTIV EPOC EEG signals and that the accuracy of the classification is acceptable

    Modern drowsiness detection techniques: a review

    Get PDF
    According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness

    Joint time-frequency analysis and filtering of single trial event-related potentials.

    Get PDF
    The ongoing electrical activity of the brain is known as the electroencephalograph (EEG). Event related potentials (ERPs) are voltage deviations in the EEG elicited in association with stimuli. Their elicitation require cognitive processes such as response to a recognised stimulus. ERPs therefore provide clinical information by allowing an insight into neurological processes. The amplitude of an event-related potential is typically several times less than the background EEG. The background EEG has the effect of obscuring the ERP and therefore appropriate signal processing is required for its recovery. Traditionally ERPs are estimated using the synchronised averaging of several single trials or sweeps. This inhibits investigation of any trial-to-trial variation, which can prove valuable in understanding cognitive processes. An aim of this study was to develop wavelet-based techniques for the recovery of single trial ERPs from background EEG. A novel wavelet-based adaptive digital filtering method for ERPs has been developed. The method provides the ability to effectively estimate or recover single ERPs. The effectiveness of the method has been quantitatively evaluated and compared with other methods of ERP estimation.The ability to recover single sweep ERPs allowed the investigation of characteristics that are not possible using the conventional averaged estimation. The development of features of a cognitive ERP known as the contingent negative variation over a number of trials was investigated. The trend in variation enabled the identification of schizophrenic subjects using artificial intelligence methods.A new technique to investigate the phase dynamics of ERPs was developed. This was successfully applied, along with other techniques, to the investigation of independent component analysis (ICA) component activations in a visual spatial attention task. Two components with scalp projections that suggested that they may be sources within the visual cortex were investigated. The study showed that the two components were visual field selective and that their activation was both amplitude and phase modulated

    Study of non-invasive cognitive tasks and feature extraction techniques for brain-computer interface (BCI) applications

    Get PDF
    A brain-computer interface (BCI) provides an important alternative for disabled people that enables the non-muscular communication pathway among individual thoughts and different assistive appliances. A BCI technology essentially consists of data acquisition, pre-processing, feature extraction, classification and device command. Indeed, despite the valuable and promising achievements already obtained in every component of BCI, the BCI field is still a relatively young research field and there is still much to do in order to make BCI become a mature technology. To mitigate the impediments concerning BCI, the study of cognitive task together with the EEG feature and classification framework have been investigated. There are four distinct experiments have been conducted to determine the optimum solution to those specific issues. In the first experiment, three cognitive tasks namely quick math solving, relaxed and playing games have been investigated. The features have been extracted using power spectral density (PSD), logenergy entropy, and spectral centroid and the extracted feature has been classified through the support vector machine (SVM), K-nearest neighbor (K-NN), and linear discriminant analysis (LDA). In this experiment, the best classification accuracy for single channel and five channel datasets were 86% and 91.66% respectively that have been obtained by the PSD-SVM approach. The wink based facial expressions namely left wink, right wink and no wink have been studied through fast Fourier transform (FFT) and sample range feature and then the extracted features have been classified using SVM, K-NN, and LDA. The best accuracy (98.6%) has been achieved by the sample range-SVM based approach. The eye blinking based facial expression has been investigated following the same methodology as the study of wink based facial expression. Moreover, the peak detection approach has also been employed to compute the number of blinks. The optimum accuracy of 99% has been achieved using the peak detection approach. Additionally, twoclass motor imagery hand movement has been classified using SVM, K-NN, and LDA where the feature has been extracted through PSD, spectral centroid and continuous wavelet transform (CWT). The optimum 74.7% accuracy has been achieved by the PSDSVM approach. Finally, two device command prototypes have been designed to translate the classifier output. One prototype can translate four types of cognitive tasks in terms of 5 watts four different colored bulbs, whereas, another prototype may able to control DC motor utilizing cognitive tasks. This study has delineated the implementation of every BCI component to facilitate the application of brainwave assisted assistive appliances. Finally, this thesis comes to the end by drawing the future direction regarding the current issues of BCI technology and these directions may significantly enhance usability for the implementation of commercial applications not only for the disabled but also for a significant number of healthy users

    Signal Processing of Electroencephalogram for the Detection of Attentiveness towards Short Training Videos

    Get PDF
    This research has developed a novel method which uses an easy to deploy single dry electrode wireless electroencephalogram (EEG) collection device as an input to an automated system that measures indicators of a participant’s attentiveness while they are watching a short training video. The results are promising, including 85% or better accuracy in identifying whether a participant is watching a segment of video from a boring scene or lecture, versus a segment of video from an attentiveness inducing active lesson or memory quiz. In addition, the final system produces an ensemble average of attentiveness across many participants, pinpointing areas in the training videos that induce peak attentiveness. Qualitative analysis of the results of this research is also very promising. The system produces attentiveness graphs for individual participants and these triangulate well with the thoughts and feelings those participants had during different parts of the videos, as described in their own words. As distance learning and computer based training become more popular, it is of great interest to measure if students are attentive to recorded lessons and short training videos. This research was motivated by this interest, as well as recent advances in electronic and computer engineering’s use of biometric signal analysis for the detection of affective (emotional) response. Signal processing of EEG has proven useful in measuring alertness, emotional state, and even towards very specific applications such as whether or not participants will recall television commercials days after they have seen them. This research extended these advances by creating an automated system which measures attentiveness towards short training videos. The bulk of the research was focused on electrical and computer engineering, specifically the optimization of signal processing algorithms for this particular application. A review of existing methods of EEG signal processing and feature extraction methods shows that there is a common subdivision of the steps that are used in different EEG applications. These steps include hardware sensing filtering and digitizing, noise removal, chopping the continuous EEG data into windows for processing, normalization, transformation to extract frequency or scale information, treatment of phase or shift information, and additional post-transformation noise reduction techniques. A large degree of variation exists in most of these steps within the currently documented state of the art. This research connected these varied methods into a single holistic model that allows for comparison and selection of optimal algorithms for this application. The research described herein provided for such a structured and orderly comparison of individual signal analysis and feature extraction methods. This study created a concise algorithmic approach in examining all the aforementioned steps. In doing so, the study provided the framework for a systematic approach which followed a rigorous participant cross validation so that options could be tested, compared and optimized. Novel signal analysis methods were also developed, using new techniques to choose parameters, which greatly improved performance. The research also utilizes machine learning to automatically categorize extracted features into measures of attentiveness. The research improved existing machine learning with novel methods, including a method of using per-participant baselines with kNN machine learning. This provided an optimal solution to extend current EEG signal analysis methods that were used in other applications, and refined them for use in the measurement of attentiveness towards short training videos. These algorithms are proven to be best via selection of optimal signal analysis and optimal machine learning steps identified through both n-fold and participant cross validation. The creation of this new system which uses signal processing of EEG for the detection of attentiveness towards short training videos has created a significant advance in the field of attentiveness measuring towards short training videos

    Advanced bioelectrical signal processing methods: Past, present and future approach - Part III: Other biosignals

    Get PDF
    Analysis of biomedical signals is a very challenging task involving implementation of various advanced signal processing methods. This area is rapidly developing. This paper is a Part III paper, where the most popular and efficient digital signal processing methods are presented. This paper covers the following bioelectrical signals and their processing methods: electromyography (EMG), electroneurography (ENG), electrogastrography (EGG), electrooculography (EOG), electroretinography (ERG), and electrohysterography (EHG).Web of Science2118art. no. 606
    corecore