4,658 research outputs found

    An active wearable dual-band antenna for GPS and Iridium satellite phone deployed in a rescue worker garment

    Get PDF
    An active wearable dual-band circularly polarized microstrip patch antenna for Global Positioning System and Iridium satellite phone applications is presented. It is constructed using flexible foam and fabric substrates, combined with copper-on-polyimide film conductors. A low-noise amplifier chip is integrated directly underneath the antenna patch. The antenna's performance is examined under bending and on-body conditions. The active antenna gain is higher than 25 dBi and the 3dB axial ratio bandwidth exceeds 183 MHz in free-space conditions. The antenna performance is robust to bending and on-body placement

    Synchronous wearable wireless body sensor network composed of autonomous textile nodes

    Get PDF
    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system

    Textile Diamond Dipole and Artificial Magnetic Conductor Performance under Bending, Wetness and Specific Absorption Rate Measurements

    Get PDF
    Textile diamond dipole and Artificial Magnetic Conductor (AMC) have been proposed and tested under wearable and body centric measurements. The proposed antenna and AMC sheet are entirely made of textiles for both the substrate and conducting parts, thus making it suitable for wearable communications. Directive radiation patterns with high gain are obtained with the proposed AMC sheet, hence minimizing the radiation towards the human body. In this study, wearable and body centric measurements are investigated which include bending, wetness and Specific Absorption Rate (SAR). Bending is found not to give significant effect to the antenna and AMC performance, as opposed to wetness that yields severe performance distortion. However, the original performance is retrieved once the antenna and AMC dried. Moreover, notable SAR reduction is achieved with the introduction of the AMC sheet, which is appropriate to reduce the radiation that penetrates into human flesh

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    The status of textile-based dry EEG electrodes

    Get PDF
    Electroencephalogram (EEG) is the biopotential recording of electrical signals generated by brain activity. It is useful for monitoring sleep quality and alertness, clinical applications, diagnosis, and treatment of patients with epilepsy, disease of Parkinson and other neurological disorders, as well as continuous monitoring of tiredness/ alertness in the field. We provide a review of textile-based EEG. Most of the developed textile-based EEGs remain on shelves only as published research results due to a limitation of flexibility, stickability, and washability, although the respective authors of the works reported that signals were obtained comparable to standard EEG. In addition, nearly all published works were not quantitatively compared and contrasted with conventional wet electrodes to prove feasibility for the actual application. This scenario would probably continue to give a publication credit, but does not add to the growth of the specific field, unless otherwise new integration approaches and new conductive polymer composites are evolved to make the application of textile-based EEG happen for bio-potential monitoring

    Investigation of a Switchable Textile Communication System on the Human Body

    Get PDF
    In this paper, a switchable textile communication system working at 2.45 GHz ISM band is presented and studied for different locations within a realistic on-body environment. A 3D laser scanner is used to generate a numerical phantom of the measured subject to improve the accuracy of the simulations which are carried out for different body postures. For the off-body communications, the system is acting as an aperture coupled microstrip patch antenna with a boresight gain of 1.48 dBi. On-body communication is achieved by using a textile stripline, which gives approximately 5 dB transmission loss over 600 mm distance. The system is switched between on and off-body modes by PIN diodes. Common issues, such as shape distortion and body detuning effects which the textile antenna may experience in realistic use are fully discussed. Robust antenna performance is noted in the on-body tests, and an additional 3 dB transmission coefficient deduction was noticed in the most severe shape distortion case

    Regenerated Cellulose Fiber Solar Cell

    Full text link
    Wearable electronics and smart textiles are growing fields in the cause to integrate modern communication and computing tools into clothing instead of carrying around smart phones and tablets. Naturally, this also requires power sources to be integrated in textiles. In this paper, a proof-of-concept is presented in form of a photovoltaic cell based on a commercially available viscose fiber. This has been realized using a silver nanowire network around the viscose fiber to establish electrical contact and a photoactive coating using the standard workhorse among organic thin film solar cells, a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). Structure and performance of single fiber devices demonstrate their feasibility and functionality. The applied materials and methods are compatible to solution processing therewith qualifying for potential roll-to-roll large-scale production

    Sonic City: Prototyping a wearable experience

    Get PDF
    Sonic City is a project exploring mobile interaction and wearable technology for everyday music creation. A wearable system has been developed that creates electronic music in real-time based on sensing bodily and environmental factors - thus, a personal soundscape is co-produced by physical movement, local activity, and urban ambiance simply by walking through the city. Applying multi-disciplinary methods, we have developed the wearable from a scenario-driven, aesthetic and lifestyle perspective. A garment has been crafted for 'trying on' interaction and wearabilty options with users on-site in the city. With this prototype, we have been able to expore and rapidly iterate context and content, social and human factors of the wearable application
    • …
    corecore