17,999 research outputs found

    Systemwide Clinical Ultrasound Program Development: An Expert Consensus Model.

    Get PDF
    Clinical ultrasound (CUS) is integral to the practice of an increasing number of medical specialties. Guidelines are needed to ensure effective CUS utilization across health systems. Such guidelines should address all aspects of CUS within a hospital or health system. These include leadership, training, competency, credentialing, quality assurance and improvement, documentation, archiving, workflow, equipment, and infrastructure issues relating to communication and information technology. To meet this need, a group of CUS subject matter experts, who have been involved in institution- and/or systemwide clinical ultrasound (SWCUS) program development convened. The purpose of this paper was to create a model for SWCUS development and implementation

    An approach to safety analysis of clinical workflows

    Get PDF
    A clinical workflow considers the information and processes that are involved in providing a clinical service. They are safety critical since even minor faults have the potential to propagate and consequently cause harm to a patient, or even for a patient's life to be lost. Experiencing these kinds of failures has a destructive impact on all the involved parties. Due to the large number of processes and tasks included in the delivery of a clinical service, it can be difficult to determine the individuals or the processes that are responsible for adverse events, since such an analysis is typically complex and slow to do manually. Using automated tools to carry out an analysis can help in determining the root causes of potential adverse events and consequently help in avoiding preventable errors through either the alteration of existing workflows, or the design of a new workflow. This paper describes a technical approach to safety analysis of clinical workflows, utilising a safety analysis tool (Hierarchically-Performed Hazard Origin and Propagation Studies (HiP-HOPS)) that is already in use in the field of mechanical systems. The paper then demonstrates the applicability of the approach to clinical workflows by applying it to analyse the workflow in a radiology department. We conclude that the approach is applicable to this area of healthcare and provides a mechanism both for the systematic identification of adverse events and for the introduction of possible safeguards in clinical workflows

    Developing the Quantitative Histopathology Image Ontology : A case study using the hot spot detection problem

    Get PDF
    Interoperability across data sets is a key challenge for quantitative histopathological imaging. There is a need for an ontology that can support effective merging of pathological image data with associated clinical and demographic data. To foster organized, cross-disciplinary, information-driven collaborations in the pathological imaging field, we propose to develop an ontology to represent imaging data and methods used in pathological imaging and analysis, and call it Quantitative Histopathological Imaging Ontology – QHIO. We apply QHIO to breast cancer hot-spot detection with the goal of enhancing reliability of detection by promoting the sharing of data between image analysts

    A safety analysis approach to clinical workflows : application and evaluation

    Get PDF
    Clinical workflows are safety critical workflows as they have the potential to cause harm or death to patients. Their safety needs to be considered as early as possible in the development process. Effective safety analysis methods are required to ensure the safety of these high-risk workflows, because errors that may happen through routine workflow could propagate within the workflow to result in harmful failures of the system’s output. This paper shows how to apply an approach for safety analysis of clinic al workflows to analyse the safety of the workflow within a radiology department and evaluates the approach in terms of usability and benefits. The outcomes of using this approach include identification of the root causes of hazardous workflow failures that may put patients’ lives at risk. We show that the approach is applicable to this area of healthcare and is able to present added value through the detailed information on possible failures, of both their causes and effects; therefore, it has the potential to improve the safety of radiology and other clinical workflows

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions
    • …
    corecore