143,442 research outputs found

    Differences in intention to use educational RSS feeds between Lebanese and British students: A multi‑group analysis based on the technology acceptance model

    Get PDF
    Really Simple Syndication (RSS) offers a means for university students to receive timely updates from virtual learning environments. However, despite its utility, only 21% of home students surveyed at a university in Lebanon claim to have ever used the technology. To investigate whether national culture could be an influence on intention to use RSS, the survey was extended to British students in the UK. Using the Technology Adoption Model (TAM) as a research framework, 437 students responded to a questionnaire containing four constructs: behavioral intention to use; attitude towards benefit; perceived usefulness; and perceived ease of use. Principle components analysis and structural equation modelling were used to explore the psychometric qualities and utility of TAM in both contexts. The results show that adoption was significantly higher, but also modest, in the British context at 36%. Configural and metric invariance were fully supported, while scalar and factorial invariance were partially supported. Further analysis shows significant differences between perceived usefulness and perceived ease of use across the two contexts studied. Therefore, it is recommended that faculty demonstrate to students how educational RSS feeds can be used effectively to increase awareness and emphasize usefulness in both contexts

    Formalization of Universal Algebra in Agda

    Get PDF
    In this work we present a novel formalization of universal algebra in Agda. We show that heterogeneous signatures can be elegantly modelled in type-theory using sets indexed by arities to represent operations. We prove elementary results of heterogeneous algebras, including the proof that the term algebra is initial and the proofs of the three isomorphism theorems. We further formalize equational theory and prove soundness and completeness. At the end, we define (derived) signature morphisms, from which we get the contravariant functor between algebras; moreover, we also proved that, under some restrictions, the translation of a theory induces a contra-variant functor between models.Fil: Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gadea, Alejandro Emilio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pagano, Miguel Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    Legal Information and the Development of American Law: Writings on the Form and Structure of the Published Law

    Get PDF
    Robert C. Berring\u27s writings about the impacts of electronic databases, the Internet, and other communications technologies on legal research and practice are an essential part of a larger literature that explores the ways in which the forms and structures of published legal information have influenced how American lawyers think about the law. This paper reviews Berring\u27s writings, along with those of other writers concerned with these questions, focusing on the implications of Berring\u27s idea that in the late nineteenth century American legal publishers created a conceptual universe of thinkable thoughts through which U.S. lawyers came to view the law. It concludes that, spurred by Berring and others, the literature of legal information has become far reaching in scope and interdisciplinary in approach, while the themes struck in Berring\u27s work continue to inform the scholarship of newer writers

    A universe of processes and some of its guises

    Full text link
    Our starting point is a particular `canvas' aimed to `draw' theories of physics, which has symmetric monoidal categories as its mathematical backbone. In this paper we consider the conceptual foundations for this canvas, and how these can then be converted into mathematical structure. With very little structural effort (i.e. in very abstract terms) and in a very short time span the categorical quantum mechanics (CQM) research program has reproduced a surprisingly large fragment of quantum theory. It also provides new insights both in quantum foundations and in quantum information, and has even resulted in automated reasoning software called `quantomatic' which exploits the deductive power of CQM. In this paper we complement the available material by not requiring prior knowledge of category theory, and by pointing at connections to previous and current developments in the foundations of physics. This research program is also in close synergy with developments elsewhere, for example in representation theory, quantum algebra, knot theory, topological quantum field theory and several other areas.Comment: Invited chapter in: "Deep Beauty: Understanding the Quantum World through Mathematical Innovation", H. Halvorson, ed., Cambridge University Press, forthcoming. (as usual, many pictures
    corecore