946 research outputs found

    Underground operation of the ICARUS T600 LAr-TPC: first results

    Full text link
    Open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the particle interaction Standard Model. Addressing these questions requires a new generation of massive particle detectors exploring the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of a novel detector generation able to combine the imaging capabilities of the old famous "bubble chamber" with an excellent energy measurement in huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory, studying cosmic rays, neutrino oscillation and proton decay. Physical potentialities of this novel telescope are presented through few examples of neutrino interactions reconstructed with unprecedented details. Detector design and early operation are also reported.Comment: 14 pages, 8 figures, 2 tables. Submitted to Jins

    Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)

    Full text link
    The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin22θ13>0.01\sin^22\theta_{13}>0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called ``Phase II'') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and π0\pi^0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae, ...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of ``Phase II'' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure

    Electron-hadron shower discrimination in a liquid argon time projection chamber

    Get PDF
    By exploiting structural differences between electromagnetic and hadronic showers in a multivariate analysis we present an efficient Electron-Hadron discrimination algorithm for liquid argon time projection chambers, validated using Geant4 simulated data

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    Progress On Neutrino-Proton Neutral-Current Scattering In MicroBooNE

    Full text link
    The MicroBooNE Experiment at the Fermi National Accelerator Laboratory, an 89-ton active mass liquid argon time projection chamber, affords a unique opportunity to observe low-Q2Q^2 neutral-current neutrino-proton scattering events. Neutral-current neutrino-proton scattering at Q2<1Q^2 < 1 GeV2^2 is dominated by the proton's axial form factor, which can be written as a combination of contributions from the up, down, and strange quarks: GA(Q2)=12[GAu(Q2)+GAd(Q2)+GAs(Q2)]G_A(Q^2) = \frac{1}{2}[-G_A^u(Q^2)+G_A^d(Q^2)+G_A^s(Q^2)]. The contribution from up and down quarks has been established in past charged-current measurements. The contribution from strange quarks at low Q2Q^2 remains unmeasured; this is of great interest since the strange quark contribution to the proton spin can be determined from the low-Q2Q^2 behavior: ΔS=GAs(Q2=0)\Delta S = G_A^s(Q^2=0). MicroBooNE began operating in the Booster Neutrino Beam in October 2015. I will present the status in observing isolated proton tracks in the MicroBooNE detector as a signature for neutral-current neutrino-proton events. The sensitivity of the MicroBooNE experiment for measuring the strange quark contribution to the proton spin will be discussed.Comment: Proceedings for the 26th International Nuclear Physics Conference, 11-16 September, 2016, Adelaide, Australi
    corecore