2,297 research outputs found

    Refueling: Preventing wire degradation due to electromigration

    Get PDF
    Electromigration is a major source of wire and via failure. Refueling undoes EM for bidirectional wires and power/ground grids-some of a chip's most vulnerable wires. Refueling exploits EM's self-healing effect by balancing the amount of current flowing in both directions of a wire. It can significantly extend a wire's lifetime while reducing the chip area devoted to wires.Peer ReviewedPostprint (published version

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    Analog layout design automation: ILP-based analog routers

    Get PDF
    The shrinking design window and high parasitic sensitivity in the advanced technology have imposed special challenges on the analog and radio frequency (RF) integrated circuit design. In this thesis, we propose a new methodology to address such a deficiency based on integer linear programming (ILP) but without compromising the capability of handling any special constraints for the analog routing problems. Distinct from the conventional methods, our algorithm utilizes adaptive resolutions for various routing regions. For a more congested region, a routing grid with higher resolution is employed, whereas a lower-resolution grid is adopted to a less crowded routing region. Moreover, we strengthen its speciality in handling interconnect width control so as to route the electrical nets based on analog constraints while considering proper interconnect width to address the acute interconnect parasitics, mismatch minimization, and electromigration effects simultaneously. In addition, to tackle the performance degradation due to layout dependent effects (LDEs) and take advantage of optical proximity correction (OPC) for resolution enhancement of subwavelength lithography, in this thesis we have also proposed an innovative LDE-aware analog layout migration scheme, which is equipped with our special routing methodology. The LDE constraints are first identified with aid of a special sensitivity analysis and then satisfied during the layout migration process. Afterwards the electrical nets are routed by an extended OPC-inclusive ILP-based analog router to improve the final layout image fidelity while the routability and analog constraints are respected in the meantime. The experimental results demonstrate the effectiveness and efficiency of our proposed methods in terms of both circuit performance and image quality compared to the previous works

    Production processes of fermented organic acids targeted around membrane operations: design of the concentration step by conventional electrodialysis

    Get PDF
    Organic acids are increasingly used for various industrial applications. Their production is mainly achieved by fermentation. Precipitation or extraction stages, which generate big amount of effluents, are then traditionally used to get the acid in a suitable form. To lower the impact on the environment, the implementation of cleaner operations are investigated. In this context, a complete process targeted around membrane operations for clarification, concentration and conversionwas studied. The present paper is devoted to the study of the concentration step, carried out by conventional electrodialysis (EDC). A model, based on the description of the solute and solution fluxes through the membranes is developed. Dedicated procedures are proposed to determine the different contributions, i.e. electromigration and diffusion, to these fluxes so as to feed the model. This approach is then applied to the concentration of sodium lactate solutions. The preponderance of electromigration is thus demonstrated as well as the existence of a maximum achievable concentration, the predicted value of which is confirmed experimentally. Comparison between EDC of sodium and ammonium lactate solutions shows that the counter ion has negligible influence on the transport of lactate. The influence of the membrane characteristics is also drawn from comparison with previously published results. Finally, the predictions of the model are compared with the experimental results concerning the concentration of a fermentation broth and a good agreement is stated. The approach proposed in this paper can be used as well to design EDC concentration of any other organic acid salt than lactate

    Copper Metal for Semiconductor Interconnects

    Get PDF
    Resistance-capacitance (RC) delay produced by the interconnects limits the speed of the integrated circuits from 0.25 mm technology node. Copper (Cu) had been used to replace aluminum (Al) as an interconnecting conductor in order to reduce the resistance. In this chapter, the deposition method of Cu films and the interconnect fabrication with Cu metallization are introduced. The resulting integration and reliability challenges are addressed as well

    Electrodialytic processes in solid matrices. New insights into batteries recycling. A review.

    Get PDF
    Electrodialytic Remediation has been widely applied to the recovery of different contaminants from numerous solid matrices solving emerging issues of environmental concern. Results and conclusions reported in studies about real contaminated matrices are summarizes in this work. The influence of the pH value on the treatment effectiveness has been widely proved highlighting the phenomenon “water splitting” in the membrane surface. This dissociation of water molecules is related to the “limiting current” which is desirable to be exceed at the Anion Exchange Membrane in order to produce the entering of protons toward solid matrix. Other important parameters for the optimization of the technique, such as the current density and the liquid to solid ratio, are also discussed through the revision of studies using real solid matrices. This work also focusses on the pioneer proposal of electrokinetic technologies for the recycling of lithium ion batteries considering the relevance of waste properties in the design and optimization of the technique. From a thorough literature revision, it could be concluded that further experimental results are needed to allow an optimal application of the technique to the rising problem of residues from batteries. The main aim of this work is to take the first steps in the recovery of valuable metals from spent batteries, such as Li and Co, incorporating principles of green chemistry.The authors acknowledge the financial support from the “Plan Propio de Investigación de la Universidad de Málaga with Project numbers: PPIT.UMA.B1.2017/20 and PPIT.UMA.B5.2018/17 and the European project THROUGH H2020-MSCA-RISE- 2017-778045. The first author also acknowledge the postdoctoral contract obtained from University of Malaga
    corecore