8 research outputs found

    FLEXIBLE NEURAL INTERFACES FOR RECORDING AND STIMULATION OF PERIPHERAL AND VISCERAL NERVES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of a wearable sensor system for neonatal seizure monitoring

    Get PDF

    Design of a wearable sensor system for neonatal seizure monitoring

    Get PDF

    Biomedical signal filtering for noisy environments

    Full text link
     Luke\u27s work addresses issue of robustly attenuating multi-source noise from surface EEG signals using a novel Adaptive-Multiple-Reference Least-Means-Squares filter (AMR-LMS). In practice, the filter successfully removes electrical interference and muscle noise generated during movement which contaminates EEG, allowing subjects to maintain maximum mobility throughout signal acquisition and during the use of a Brain Computer Interface

    Electrode-Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode

    No full text
    Electrodes are used to convert ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface and characterizing the impedance of the interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. Previous work has yielded accurate models for single-element biomedical electrodes. This paper introduces a model for a tripolar concentric ring electrode (TCRE) derived from impedance measurements using electrochemical impedance spectroscopy with a Ten20 electrode impedance matching paste. It is shown that the model serves well to predict the performance of the electrode-electrolyte interface for TCREs as well as standard cup electrodes. In this paper, we also discuss the comparison between the TCRE and the standard cup electrode regarding their impedance characterization and demonstrate the benefit of using TCREs in biomedical applications. We have also conducted auditory evoked potential experiments using both TCRE and standard cup electrodes. The results show that electroencephalography (EEG) recorded from tripolar concentric ring electrodes is beneficial, acquiring the auditory brainstem response with less stimuli with respect to recoding EEG using standard cup electrodes

    Electrode Evaluation and Electrocortical Dynamics of Adapting to Small Perturbations during Treadmill Walking

    Get PDF
    Mobile brain-body imaging (MoBI) seeks to understand human brain and body dynamics during movement and locomotor tasks such as walking with perturbations that challenge balance and lead to adaptation of walking behavior. In this dissertation, I evaluated the long-term electromyography (EMG) recording performance of dry epidermal electrodes for measuring electrical muscle activity. I also evaluated the relationships between the signals recorded from the two sides of dual-sided electroencephalography (EEG) electrodes, a recent advancement in EEG electrode design for measuring electrical brain activity. Last, I investigated adaptation of brain and body responses to small and frequent perturbations during treadmill walking while I recorded brain activity using a custom-built dual-layer EEG system and body kinematics using motion capture. Dry epidermal electrodes provided better Signal Quality Indices, a metric I developed that accounts for signal-to-noise and signal-to-motion contributions, during limited dynamic movements, indicating that high-quality EMG for long-term recording was possible but also limited. For the dual-sided EEG electrode evaluation, I quantified correlations between dual-sided EEG signals in a benchtop experiment. Signals recorded from two sides of a dual-sided EEG electrode were highly correlated during constrained movements but degraded in more realistic random movements. This information is critical for developing EEG cleaning algorithms based on dual-layer EEG systems. For the locomotor adaptation studies, I quantified gait stability using margin of stability and its components and performed source localization and time-frequency analyses to determine electrocortical processes during perturbed walking. Small and frequent treadmill perturbations disrupted gait stability and quickly induced direction-dependent gait stability adaptation. Anterior cingulate theta-band adaptation occurred and was more evident during belt deceleration perturbations compared to belt acceleration perturbations. These results add new knowledge about the characteristics of novel EMG and EEG electrodes and revealed the potential of modulating perturbation direction to tune gait stability strategy and activation of electrocortical dynamics

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 1

    Get PDF
    These papers comprise a peer-review selection of presentations by authors from NASA, LPI industry, and academia at the Second Conference (April 1988) on Lunar Bases and Space Activities of the 21st Century, sponsored by the NASA Office of Exploration and the Lunar Planetary Institute. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics covered by this volume include (1) design and operation of transportation systems to, in orbit around, and on the Moon, (2) lunar base site selection, (3) design, architecture, construction, and operation of lunar bases and human habitats, and (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology
    corecore