585 research outputs found

    The SF6 Decomposition Mechanism: Background and Significance

    Get PDF
    Gas Insulated Switchgear (GIS) has been widely used in substations. The insulating medium used in GIS is sulfur hexafluoride (SF6) gas. However, the internal insulation defect existed in GIS would inevitably lead to partial discharge (PD), and cause the composition of SF6 to SOF2, SO2F2 and SO2 and other characteristic component gases. The decomposition phenomenon would greatly reduce the insulation performance of SF6 insulated equipment, and even paralyze the whole power supply system. In this chapter, we first discuss the objective existence, decomposition mechanism and harmness of insulation defects. Then the methods for insulation defects detection used to avoid the insulation accidents are introduced. Comparing all of the detection methods, diagnosing the insulation defect through analyzing the decomposed gases of SF6 by chemical gas sensors is the optimal method due to its advantages, such as high detection accuracy and stability, signifying the importance of developing chemical gas sensor used in SF6 insulated equipment. In conclusion, there kinds of gas sensor material, carbon nanotubes, graphene, are chosen as the gas sensing materials to build specific gas sensors for detecting each kind of SF6 decomposed gases, and then enhance the gas sensitivity and selectivity by material modification

    Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis

    Get PDF
    We present the first successful synthesis of monodisperse carbon nanodots (CNDs) with tunable photoluminescence (PL) carried out by laser pyrolysis of two common volatile organic precursors such as toluene and pyridine. Remarkably, the initial chemical composition of the precursor determines the formation of undoped or N-doped CNDs and their corresponding absorption response in the visible range (expanded for the latter). We demonstrate the control and versatility of this synthesis method to tune the final outcome and its potential to explore a great number of potential solvent candidates. Furthermore, we have successfully exploited these CNDs (both undoped and N-doped) as effective sensitizers of TiO2 nanoparticles in the visible-light driven photo-degradation of a cationic dye selected as model organic pollutant

    Development and application of analytical methods based on enhanced Raman gas spectroscopy for biogeochemical process monitoring

    Get PDF
    The present work reports on novel analytical approaches and instrumentation for several biogeochemical gas monitoring applications. Exploiting Raman gas spectroscopy in combination with two signal enhancement techniques either fiber or cavity enhancement we developed quantitative methods for estimating the gas composition and exchange during soil biodegradation, biological nitrogen fixation, fruit ripening and physical leakage processes in environmental chambers. The first part of this thesis describes the fruit ripening analysis and the developed gas sensor based on fiber enhanced Raman spectroscopy for fast and non-destructive gas monitoring throughout the complete postharvest production chain of tropical produce. Analytical solutions for the other applications rely on the use of a cavity enhanced Raman gas analyzer. Linking gas diffusion theory, the tracer sulfur hexafluoride and a developed experimental protocol, we demonstrate the influence of physical gas leakage on determined gross exchange rates of biological systems and provide an analytical correction method to quantify the underlying biological signal. Within the scope of a soil biodegradation study, we developed an analytical method to follow the fate of xenobiotics after a contamination. The non-invasive gas monitoring solution we present is capable of quantifying the fraction of degraded hydrocarbons as contaminants, as well as identifying changes in respiration. Our Raman spectroscopic approach indicates the potential to elucidate the dynamics of specific enzymatic reactions and the occurrence of concomitant processes such as changes in the substrate for soil bacterial metabolism. In the last part of this thesis, we report on a novel analytical approach, which enables determination of biological nitrogen fixation rates without requiring a proxy, isotopes or an exchange of the natural ecosystem atmosphere. Common standard techniques do not support such a simple and most natural experimental design and we report on the first biological nitrogen fixation rate estimates derived by optical spectroscopy of N2. Our proposed method indicates the potential to reduce existing uncertainties in nitrogen fixation measurements and might open up a new avenue of biological nitrogen fixation research

    Typical Internal Defects of Gas-Insulated Switchgear and Partial Discharge Characteristics

    Get PDF
    Gas-insulated switchgear (GIS) is a common electrical equipment, which uses sulfur hexafluoride (SF6) as insulating medium instead of traditional air. It has good reliability and flexibility. However, GIS may have internal defects and partial discharge (PD) is then induced. PD will cause great harm to GIS and power system. Therefore, it is of great importance to study the intrinsic characteristics and detection of PD for online monitoring. In this chapter, typical internal defects of GIS and the PD characteristics are discussed. Several detection methods are also presented in this chapter including electromagnetic method, chemical method, and optical method

    Application of CNTs Gas Sensor in Online Monitoring of SF6 Insulated Equipment

    Get PDF
    The detection and analysis of SF6 decomposition components are of great significance in online condition assessment and fault diagnosis of GIS. Considering the shortcomings of general detection methods, carbon nanotubes (CNTs) gas sensor was studied to detect the SF6 decomposition components because of its advantages in large surface activity and abundant pore structure, et al. The large surface area has a strong adsorption and desorption capacity. In this chapter, SF6 decomposed gases, namely SO2F2, SOF2, SO2, H2S and CF4 are chosen as probe gases because they are the main by-products in the decomposition of SF6 under partial density (PD). First, the properties and preparation methods of CNTs are introduced to verify the advantages of CNTs for SF6 decomposition components detection. Then, both theoretical calculation and sensing experiment were adopted to study the microadsorption mechanism and macrogas-sensing properties. Based on the intrinsic CNTs, study for SF6 decomposition components adsorption, Pd, Ni, Al, Pt and Au metal doping CNTs and plasma-modified CNTs are discussed in order to enhance the gas sensing and selectivity of CNTs

    Summaries of FY 1997 Research in the Chemical Sciences

    Get PDF
    The objective of this program is to expand, through support of basic research, knowledge of various areas of chemistry, physics and chemical engineering with a goal of contributing to new or improved processes for developing and using domestic energy resources in an efficient and environmentally sound manner. Each team of the Division of Chemical Sciences, Fundamental Interactions and Molecular Processes, is divided into programs that cover the various disciplines. Disciplinary areas where research is supported include atomic, molecular, and optical physics; physical, inorganic, and organic chemistry; chemical energy, chemical physics; photochemistry; radiation chemistry; analytical chemistry; separations science; heavy element chemistry; chemical engineering sciences; and advanced battery research. However, traditional disciplinary boundaries should not be considered barriers, and multi-disciplinary efforts are encouraged. In addition, the program supports several major scientific user facilities. The following summaries describe the programs

    Silica and Silicon Based Nanostructures

    Get PDF
    Silica and silicon-based nanostructures are now well-understood materials for which the technologies are mature. The most obvious applications, such as electronic devices, have been widely explored over the last two decades. The aim of this Special Issue is to bring together the state of the art in the field and to enable the emergence of new ideas and concepts for silicon and silica-based nanostructures

    Experimental Analysis of Modified CNTs-Based Gas Sensor

    Get PDF
    As a significant equipment in power system, the operation condition of transformers directly determines the safety of power system. Therefore, it has been an indispensable measure to detect and analyze the dissolved gases in transformers, aiming to estimate the early potential faults in oil‐insulated transformers. In this chapter, the adsorption processes between modified carbon nanotubes (CNTs) (CNTs‐OH, Ni‐CNTs) and dissolved gases in transformers oil including C2H2, C2H4, C2H6, CH4, CO, and H2 have been simulated based on the first principle theory. Meanwhile, the density of states (DOS), adsorption energy, charge transfer amount, and adsorption distance of adsorption process between CNTs and dissolved gases were calculated. Moreover, two kinds of sensors, mixed acid‐modified CNTs and NiCl2‐modified CNTs, are prepared to conduct the dissolved gases response experiment. Then, the gas response mechanisms were investigated. Finally, the results between response experiment and theoretical calculation were compared, reflecting a good coherence with each other. The CNTs gas sensors possess a relatively high sensitivity and fine linearity, and could be employed in dissolved gas analysis equipment in transformer
    • 

    corecore